@inproceedings{ailin-etal-2024-ji,
title = "基于双图注意力网络的篇章级散文情绪变化分析方法(A Document-Level Emotion Change Analysis Method Based on {D}ual{GAT}s for Prose)",
author = "Li, Ailin and
Li, Yang and
Wang, Suge and
Li, Shuqi",
editor = "Maosong, Sun and
Jiye, Liang and
Xianpei, Han and
Zhiyuan, Liu and
Yulan, He",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-1.38/",
pages = "492--503",
language = "zho",
abstract = "``在散文中,作者的情绪会伴随着文章的段落或者句子发生变化,比如从悲伤到快乐、从喜悦到愤怒。为此,本文构建散文情绪变化数据集,提出一种基于双图注意力网络的多种知识融合的情绪变化分析方法。首先,引入意象知识库,建立融合意象知识的句子表示;其次,构建上下文带权依赖图和语篇带权依赖图,通过融合上下文知识和语篇结构,建立了融合上下文知识、语篇结构的句子表示;同时设计愉悦效价识别层,获得融合愉悦效价信息的句子表示;在此基础上,将以上三者表示进行拼接,通过全连接网络得到最终的情绪变化结果。实验结果表明,本文提出的方法可以有效识别情绪变化,为散文阅读理解中的思想情绪变化类问题的解答提供帮助。''"
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ailin-etal-2024-ji">
<titleInfo>
<title>基于双图注意力网络的篇章级散文情绪变化分析方法(A Document-Level Emotion Change Analysis Method Based on DualGATs for Prose)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ailin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Suge</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuqi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sun</namePart>
<namePart type="family">Maosong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang</namePart>
<namePart type="family">Jiye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Han</namePart>
<namePart type="family">Xianpei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liu</namePart>
<namePart type="family">Zhiyuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">He</namePart>
<namePart type="family">Yulan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“在散文中,作者的情绪会伴随着文章的段落或者句子发生变化,比如从悲伤到快乐、从喜悦到愤怒。为此,本文构建散文情绪变化数据集,提出一种基于双图注意力网络的多种知识融合的情绪变化分析方法。首先,引入意象知识库,建立融合意象知识的句子表示;其次,构建上下文带权依赖图和语篇带权依赖图,通过融合上下文知识和语篇结构,建立了融合上下文知识、语篇结构的句子表示;同时设计愉悦效价识别层,获得融合愉悦效价信息的句子表示;在此基础上,将以上三者表示进行拼接,通过全连接网络得到最终的情绪变化结果。实验结果表明,本文提出的方法可以有效识别情绪变化,为散文阅读理解中的思想情绪变化类问题的解答提供帮助。”</abstract>
<identifier type="citekey">ailin-etal-2024-ji</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-1.38/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>492</start>
<end>503</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 基于双图注意力网络的篇章级散文情绪变化分析方法(A Document-Level Emotion Change Analysis Method Based on DualGATs for Prose)
%A Li, Ailin
%A Li, Yang
%A Wang, Suge
%A Li, Shuqi
%Y Maosong, Sun
%Y Jiye, Liang
%Y Xianpei, Han
%Y Zhiyuan, Liu
%Y Yulan, He
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G zho
%F ailin-etal-2024-ji
%X “在散文中,作者的情绪会伴随着文章的段落或者句子发生变化,比如从悲伤到快乐、从喜悦到愤怒。为此,本文构建散文情绪变化数据集,提出一种基于双图注意力网络的多种知识融合的情绪变化分析方法。首先,引入意象知识库,建立融合意象知识的句子表示;其次,构建上下文带权依赖图和语篇带权依赖图,通过融合上下文知识和语篇结构,建立了融合上下文知识、语篇结构的句子表示;同时设计愉悦效价识别层,获得融合愉悦效价信息的句子表示;在此基础上,将以上三者表示进行拼接,通过全连接网络得到最终的情绪变化结果。实验结果表明,本文提出的方法可以有效识别情绪变化,为散文阅读理解中的思想情绪变化类问题的解答提供帮助。”
%U https://aclanthology.org/2024.ccl-1.38/
%P 492-503
Markdown (Informal)
[基于双图注意力网络的篇章级散文情绪变化分析方法(A Document-Level Emotion Change Analysis Method Based on DualGATs for Prose)](https://aclanthology.org/2024.ccl-1.38/) (Li et al., CCL 2024)
ACL