@inproceedings{yawei-etal-2024-mian,
title = "面向中文文本的情绪持有者抽取研究(Research on Emotion Holder Extraction for {C}hinese Texts Yawei Sun1,,,Yu Shi1,,,Xu Han2,{\ensuremath{*}})",
author = "Yawei, Sun and
Yu, Shi and
Xu, Han",
editor = "Sun, Maosong and
Liang, Jiye and
Han, Xianpei and
Liu, Zhiyuan and
He, Yulan",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-1.41/",
pages = "526--538",
language = "zho",
abstract = "{\textquotedblleft}情绪持有者是文本中带有情绪的主体,对这些情绪持有者的分析对文本情绪理解至关重要。然而,现有研究未充分考虑情绪持有者的共指现象,且由于缺乏面向中文语料的情绪持有者抽取数据,这一研究的发展受到了进一步的限制。本文构建了一个针对中文文本的情绪持有者抽取数据集,有效解决了数据中的共指问题。同时,提出了一种融合语义、情绪和词性特征的模型,实现了高效的情绪持有者抽取与共指消解,且在各项性能指标上超越了基线模型。消融实验进一步证明了模型设计的有效性。1{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yawei-etal-2024-mian">
<titleInfo>
<title>面向中文文本的情绪持有者抽取研究(Research on Emotion Holder Extraction for Chinese Texts Yawei Sun1,,,Yu Shi1,,,Xu Han2,\ensuremath*)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sun</namePart>
<namePart type="family">Yawei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shi</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Han</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiye</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“情绪持有者是文本中带有情绪的主体,对这些情绪持有者的分析对文本情绪理解至关重要。然而,现有研究未充分考虑情绪持有者的共指现象,且由于缺乏面向中文语料的情绪持有者抽取数据,这一研究的发展受到了进一步的限制。本文构建了一个针对中文文本的情绪持有者抽取数据集,有效解决了数据中的共指问题。同时,提出了一种融合语义、情绪和词性特征的模型,实现了高效的情绪持有者抽取与共指消解,且在各项性能指标上超越了基线模型。消融实验进一步证明了模型设计的有效性。1”</abstract>
<identifier type="citekey">yawei-etal-2024-mian</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-1.41/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>526</start>
<end>538</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 面向中文文本的情绪持有者抽取研究(Research on Emotion Holder Extraction for Chinese Texts Yawei Sun1,,,Yu Shi1,,,Xu Han2,\ensuremath*)
%A Yawei, Sun
%A Yu, Shi
%A Xu, Han
%Y Sun, Maosong
%Y Liang, Jiye
%Y Han, Xianpei
%Y Liu, Zhiyuan
%Y He, Yulan
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G zho
%F yawei-etal-2024-mian
%X “情绪持有者是文本中带有情绪的主体,对这些情绪持有者的分析对文本情绪理解至关重要。然而,现有研究未充分考虑情绪持有者的共指现象,且由于缺乏面向中文语料的情绪持有者抽取数据,这一研究的发展受到了进一步的限制。本文构建了一个针对中文文本的情绪持有者抽取数据集,有效解决了数据中的共指问题。同时,提出了一种融合语义、情绪和词性特征的模型,实现了高效的情绪持有者抽取与共指消解,且在各项性能指标上超越了基线模型。消融实验进一步证明了模型设计的有效性。1”
%U https://aclanthology.org/2024.ccl-1.41/
%P 526-538
Markdown (Informal)
[面向中文文本的情绪持有者抽取研究(Research on Emotion Holder Extraction for Chinese Texts Yawei Sun1,,,Yu Shi1,,,Xu Han2,∗)](https://aclanthology.org/2024.ccl-1.41/) (Yawei et al., CCL 2024)
ACL
- Sun Yawei, Shi Yu, and Han Xu. 2024. 面向中文文本的情绪持有者抽取研究(Research on Emotion Holder Extraction for Chinese Texts Yawei Sun1,,,Yu Shi1,,,Xu Han2,∗). In Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference), pages 526–538, Taiyuan, China. Chinese Information Processing Society of China.