@inproceedings{jiewei-etal-2024-ji,
title = "基于本体信息增强的人类表型概念识别(Ontology Information-augmented Human Phenotype Concept Recognition)",
author = "Jiewei, Qi and
Ling, Luo and
Zhihao, Yang and
Jian, Wang and
Hongfei, Lin",
editor = "Sun, Maosong and
Liang, Jiye and
Han, Xianpei and
Liu, Zhiyuan and
He, Yulan",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-1.43/",
pages = "553--567",
language = "zho",
abstract = "{\textquotedblleft}从文本中自动识别人类表型概念对疾病分析具有重大意义。现存本体驱动的表型概念识别方法主要利用本体中概念名和同义词信息,并未充分考虑本体丰富信息。针对此问题,本文提出一种基于本体信息增强的人类表型概念识别方法,利用先进大语言模型进行数据增强,并设计本体向量增强的深度学习模型来提升概念识别性能。在GSC+和ID-68两个数据集上进行实验,结果表明本文提出方法能够利用本体丰富信息有效提升基线模型性能,取得了先进结果。{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jiewei-etal-2024-ji">
<titleInfo>
<title>基于本体信息增强的人类表型概念识别(Ontology Information-augmented Human Phenotype Concept Recognition)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="family">Jiewei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luo</namePart>
<namePart type="family">Ling</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Zhihao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wang</namePart>
<namePart type="family">Jian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lin</namePart>
<namePart type="family">Hongfei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiye</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“从文本中自动识别人类表型概念对疾病分析具有重大意义。现存本体驱动的表型概念识别方法主要利用本体中概念名和同义词信息,并未充分考虑本体丰富信息。针对此问题,本文提出一种基于本体信息增强的人类表型概念识别方法,利用先进大语言模型进行数据增强,并设计本体向量增强的深度学习模型来提升概念识别性能。在GSC+和ID-68两个数据集上进行实验,结果表明本文提出方法能够利用本体丰富信息有效提升基线模型性能,取得了先进结果。”</abstract>
<identifier type="citekey">jiewei-etal-2024-ji</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-1.43/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>553</start>
<end>567</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 基于本体信息增强的人类表型概念识别(Ontology Information-augmented Human Phenotype Concept Recognition)
%A Jiewei, Qi
%A Ling, Luo
%A Zhihao, Yang
%A Jian, Wang
%A Hongfei, Lin
%Y Sun, Maosong
%Y Liang, Jiye
%Y Han, Xianpei
%Y Liu, Zhiyuan
%Y He, Yulan
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G zho
%F jiewei-etal-2024-ji
%X “从文本中自动识别人类表型概念对疾病分析具有重大意义。现存本体驱动的表型概念识别方法主要利用本体中概念名和同义词信息,并未充分考虑本体丰富信息。针对此问题,本文提出一种基于本体信息增强的人类表型概念识别方法,利用先进大语言模型进行数据增强,并设计本体向量增强的深度学习模型来提升概念识别性能。在GSC+和ID-68两个数据集上进行实验,结果表明本文提出方法能够利用本体丰富信息有效提升基线模型性能,取得了先进结果。”
%U https://aclanthology.org/2024.ccl-1.43/
%P 553-567
Markdown (Informal)
[基于本体信息增强的人类表型概念识别(Ontology Information-augmented Human Phenotype Concept Recognition)](https://aclanthology.org/2024.ccl-1.43/) (Jiewei et al., CCL 2024)
ACL