@inproceedings{wenqi-etal-2024-ji,
title = "基于机器学习的语音情感声学特征筛选(Acoustic Feature Selection for Speech Emotion Based on Machine Learning)",
author = "Wenqi, Dong and
Han, Wang and
Jingwei, Zhang",
editor = "Sun, Maosong and
Liang, Jiye and
Han, Xianpei and
Liu, Zhiyuan and
He, Yulan",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-1.44/",
pages = "568--576",
language = "zho",
abstract = "{\textquotedblleft}筛选有效表达情感的声学特征对语音情感研究至关重要。对具有相同或相似声学特征的情感,声学研究中仅使用基频和时长无法有效区分。本研究扩大声学参数的种类和数量,使用三种机器学习方法,筛选出区分情感类型的多组有效声学参数,补充和完善语音情感声学研究的声学特征集。研究发现,区分不同情感所依赖的声学参数、参数数量、参数贡献都不相同,其中频谱和信噪参数发挥重要作用。本研究为语音情感声学分析的参数选择提供参考。{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wenqi-etal-2024-ji">
<titleInfo>
<title>基于机器学习的语音情感声学特征筛选(Acoustic Feature Selection for Speech Emotion Based on Machine Learning)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dong</namePart>
<namePart type="family">Wenqi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wang</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhang</namePart>
<namePart type="family">Jingwei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiye</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“筛选有效表达情感的声学特征对语音情感研究至关重要。对具有相同或相似声学特征的情感,声学研究中仅使用基频和时长无法有效区分。本研究扩大声学参数的种类和数量,使用三种机器学习方法,筛选出区分情感类型的多组有效声学参数,补充和完善语音情感声学研究的声学特征集。研究发现,区分不同情感所依赖的声学参数、参数数量、参数贡献都不相同,其中频谱和信噪参数发挥重要作用。本研究为语音情感声学分析的参数选择提供参考。”</abstract>
<identifier type="citekey">wenqi-etal-2024-ji</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-1.44/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>568</start>
<end>576</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 基于机器学习的语音情感声学特征筛选(Acoustic Feature Selection for Speech Emotion Based on Machine Learning)
%A Wenqi, Dong
%A Han, Wang
%A Jingwei, Zhang
%Y Sun, Maosong
%Y Liang, Jiye
%Y Han, Xianpei
%Y Liu, Zhiyuan
%Y He, Yulan
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G zho
%F wenqi-etal-2024-ji
%X “筛选有效表达情感的声学特征对语音情感研究至关重要。对具有相同或相似声学特征的情感,声学研究中仅使用基频和时长无法有效区分。本研究扩大声学参数的种类和数量,使用三种机器学习方法,筛选出区分情感类型的多组有效声学参数,补充和完善语音情感声学研究的声学特征集。研究发现,区分不同情感所依赖的声学参数、参数数量、参数贡献都不相同,其中频谱和信噪参数发挥重要作用。本研究为语音情感声学分析的参数选择提供参考。”
%U https://aclanthology.org/2024.ccl-1.44/
%P 568-576
Markdown (Informal)
[基于机器学习的语音情感声学特征筛选(Acoustic Feature Selection for Speech Emotion Based on Machine Learning)](https://aclanthology.org/2024.ccl-1.44/) (Wenqi et al., CCL 2024)
ACL