@inproceedings{yuanlai-etal-2024-ji,
title = "基于交互行为语义模式增强的{ID}推荐方法(Enhanced {ID} Recommendation Method Utilizing Semantic Patterns of Interactive Behaviors)",
author = "Yuanlai, Wang and
Yu, Bai and
Peng, Lian",
editor = "Sun, Maosong and
Liang, Jiye and
Han, Xianpei and
Liu, Zhiyuan and
He, Yulan",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-1.45/",
pages = "577--587",
language = "zho",
abstract = "{\textquotedblleft}基于ID的推荐是一种依赖用户或物品的唯一标识符进行推荐的经典推荐方法,这种方法经常面临用户物品交互数据稀疏、符号ID缺失语义信息等问题。该文针对上述问题,假设不同领域的用户-物品交互行为之间存在潜在的模式关联,提出了一种基于交互行为语义模式增强的ID推荐方法。该方法在目标域推荐任务中引入辅助域信息,基于图神经网络对辅助域和目标域信息进行联合编码表示,通过引入交互行为语义模式,将辅助域的用户-物品交互信息以及物品描述信息迁移至目标域,从而实现目标域ID推荐中的交互行为语义增强。在8个公开数据集上的实验结果表明,相比目前的SOTA模型,本文方法表现出更好的推荐效果,其Recall@20与NDCG@20分别具有3{\%} {\ensuremath{\sim}} 30{\%}、1{\%} {\ensuremath{\sim}} 40{\%}的提升。{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yuanlai-etal-2024-ji">
<titleInfo>
<title>基于交互行为语义模式增强的ID推荐方法(Enhanced ID Recommendation Method Utilizing Semantic Patterns of Interactive Behaviors)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wang</namePart>
<namePart type="family">Yuanlai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bai</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lian</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiye</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“基于ID的推荐是一种依赖用户或物品的唯一标识符进行推荐的经典推荐方法,这种方法经常面临用户物品交互数据稀疏、符号ID缺失语义信息等问题。该文针对上述问题,假设不同领域的用户-物品交互行为之间存在潜在的模式关联,提出了一种基于交互行为语义模式增强的ID推荐方法。该方法在目标域推荐任务中引入辅助域信息,基于图神经网络对辅助域和目标域信息进行联合编码表示,通过引入交互行为语义模式,将辅助域的用户-物品交互信息以及物品描述信息迁移至目标域,从而实现目标域ID推荐中的交互行为语义增强。在8个公开数据集上的实验结果表明,相比目前的SOTA模型,本文方法表现出更好的推荐效果,其Recall@20与NDCG@20分别具有3% \ensuremath\sim 30%、1% \ensuremath\sim 40%的提升。”</abstract>
<identifier type="citekey">yuanlai-etal-2024-ji</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-1.45/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>577</start>
<end>587</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 基于交互行为语义模式增强的ID推荐方法(Enhanced ID Recommendation Method Utilizing Semantic Patterns of Interactive Behaviors)
%A Yuanlai, Wang
%A Yu, Bai
%A Peng, Lian
%Y Sun, Maosong
%Y Liang, Jiye
%Y Han, Xianpei
%Y Liu, Zhiyuan
%Y He, Yulan
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G zho
%F yuanlai-etal-2024-ji
%X “基于ID的推荐是一种依赖用户或物品的唯一标识符进行推荐的经典推荐方法,这种方法经常面临用户物品交互数据稀疏、符号ID缺失语义信息等问题。该文针对上述问题,假设不同领域的用户-物品交互行为之间存在潜在的模式关联,提出了一种基于交互行为语义模式增强的ID推荐方法。该方法在目标域推荐任务中引入辅助域信息,基于图神经网络对辅助域和目标域信息进行联合编码表示,通过引入交互行为语义模式,将辅助域的用户-物品交互信息以及物品描述信息迁移至目标域,从而实现目标域ID推荐中的交互行为语义增强。在8个公开数据集上的实验结果表明,相比目前的SOTA模型,本文方法表现出更好的推荐效果,其Recall@20与NDCG@20分别具有3% \ensuremath\sim 30%、1% \ensuremath\sim 40%的提升。”
%U https://aclanthology.org/2024.ccl-1.45/
%P 577-587
Markdown (Informal)
[基于交互行为语义模式增强的ID推荐方法(Enhanced ID Recommendation Method Utilizing Semantic Patterns of Interactive Behaviors)](https://aclanthology.org/2024.ccl-1.45/) (Yuanlai et al., CCL 2024)
ACL