@inproceedings{jian-etal-2024-ji,
title = "基于文本风格迁移的中文性别歧视文本去毒研究(Research on detoxification of {C}hinese sexist texts based on text style transfer)",
author = "Jian, Peng and
Jiali, Zuo and
Jingxuan, Tan and
Jianyi, Wan and
Mingwen, Wang",
editor = "Sun, Maosong and
Liang, Jiye and
Han, Xianpei and
Liu, Zhiyuan and
He, Yulan",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-1.47/",
pages = "600--612",
language = "zho",
abstract = "{\textquotedblleft}网络社交媒体平台存在一定程度的性别歧视言论,阻碍了互联网健康和社会文明发展。文本风格迁移技术可以减轻文本中的性别歧视,在英语等语言上已有不少研究。但在中文领域,由于缺乏数据集而导致相关研究较少。此外,由于中文语义信息丰富、语言表达多样而导致性别歧视言论毒性的表现形式多样,现有的方法多采用单一文本风格迁移模型因而效果不佳。因此,本文提出了一个基于文本风格迁移的中文性别歧视文本去毒框架,该框架首先根据毒性的表现形式对文本进行分类,进而根据文本毒性表现形式的不同采用不同的处理方式,我们还引入了大语言模型(LLM)构建歧视词词典。实验表明,本文提出的模型能有效地处理中文文本中的性别歧视问题。{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jian-etal-2024-ji">
<titleInfo>
<title>基于文本风格迁移的中文性别歧视文本去毒研究(Research on detoxification of Chinese sexist texts based on text style transfer)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Peng</namePart>
<namePart type="family">Jian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zuo</namePart>
<namePart type="family">Jiali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tan</namePart>
<namePart type="family">Jingxuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wan</namePart>
<namePart type="family">Jianyi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wang</namePart>
<namePart type="family">Mingwen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiye</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“网络社交媒体平台存在一定程度的性别歧视言论,阻碍了互联网健康和社会文明发展。文本风格迁移技术可以减轻文本中的性别歧视,在英语等语言上已有不少研究。但在中文领域,由于缺乏数据集而导致相关研究较少。此外,由于中文语义信息丰富、语言表达多样而导致性别歧视言论毒性的表现形式多样,现有的方法多采用单一文本风格迁移模型因而效果不佳。因此,本文提出了一个基于文本风格迁移的中文性别歧视文本去毒框架,该框架首先根据毒性的表现形式对文本进行分类,进而根据文本毒性表现形式的不同采用不同的处理方式,我们还引入了大语言模型(LLM)构建歧视词词典。实验表明,本文提出的模型能有效地处理中文文本中的性别歧视问题。”</abstract>
<identifier type="citekey">jian-etal-2024-ji</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-1.47/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>600</start>
<end>612</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 基于文本风格迁移的中文性别歧视文本去毒研究(Research on detoxification of Chinese sexist texts based on text style transfer)
%A Jian, Peng
%A Jiali, Zuo
%A Jingxuan, Tan
%A Jianyi, Wan
%A Mingwen, Wang
%Y Sun, Maosong
%Y Liang, Jiye
%Y Han, Xianpei
%Y Liu, Zhiyuan
%Y He, Yulan
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G zho
%F jian-etal-2024-ji
%X “网络社交媒体平台存在一定程度的性别歧视言论,阻碍了互联网健康和社会文明发展。文本风格迁移技术可以减轻文本中的性别歧视,在英语等语言上已有不少研究。但在中文领域,由于缺乏数据集而导致相关研究较少。此外,由于中文语义信息丰富、语言表达多样而导致性别歧视言论毒性的表现形式多样,现有的方法多采用单一文本风格迁移模型因而效果不佳。因此,本文提出了一个基于文本风格迁移的中文性别歧视文本去毒框架,该框架首先根据毒性的表现形式对文本进行分类,进而根据文本毒性表现形式的不同采用不同的处理方式,我们还引入了大语言模型(LLM)构建歧视词词典。实验表明,本文提出的模型能有效地处理中文文本中的性别歧视问题。”
%U https://aclanthology.org/2024.ccl-1.47/
%P 600-612
Markdown (Informal)
[基于文本风格迁移的中文性别歧视文本去毒研究(Research on detoxification of Chinese sexist texts based on text style transfer)](https://aclanthology.org/2024.ccl-1.47/) (Jian et al., CCL 2024)
ACL