基于问题扩展的散文答案候选句抽取方法研究(Sentiment classification method based on multitasking and multimodal interactive learning)

Lei Yang (雷洋), Wang Suge (王素格), Li Shuqi (李书琪), Wang Hao (王浩)


Abstract
“在散文阅读理解中,一方面问题的题干通常较为简洁、用词较为抽象,机器难以直接理解问题的含义和要求;另一方面,散文文章较长,答案候选句分散在文章的多个段落,给答案候选句的抽取任务带来巨大的挑战。因此,本文提出了一种基于问题扩展的散文答案候选句抽取方法。首先,利用大语言模型抽取文章中与问题题干相关的词,构建问题词扩展库,其次,利用大语言模型强大的生成能力对原问题的题干进行重写,进一步,利用问题词扩展库对其扩展,最后,通过对散文文章分块处理,建立基于全局上下文信息、历史信息的问题和文章句子的相关性判断模型,用于抽取答案候选句。通过在散文阅读理解数据集上进行实验,实验结果表明本文提出的方法提高了散文抽取答案候选句的准确率,为散文阅读理解的生成类问题的解答提供了技术支撑。”
Anthology ID:
2024.ccl-1.48
Volume:
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
Month:
July
Year:
2024
Address:
Taiyuan, China
Editors:
Maosong Sun, Jiye Liang, Xianpei Han, Zhiyuan Liu, Yulan He
Venue:
CCL
SIG:
Publisher:
Chinese Information Processing Society of China
Note:
Pages:
613–624
Language:
Chinese
URL:
https://aclanthology.org/2024.ccl-1.48/
DOI:
Bibkey:
Cite (ACL):
Lei Yang, Wang Suge, Li Shuqi, and Wang Hao. 2024. 基于问题扩展的散文答案候选句抽取方法研究(Sentiment classification method based on multitasking and multimodal interactive learning). In Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference), pages 613–624, Taiyuan, China. Chinese Information Processing Society of China.
Cite (Informal):
基于问题扩展的散文答案候选句抽取方法研究(Sentiment classification method based on multitasking and multimodal interactive learning) (Yang et al., CCL 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.ccl-1.48.pdf