@inproceedings{mengxi-etal-2024-yi,
title = "意合图:中文多层次语义表示方法{\ensuremath{*}}(Parataxis Graph: Multi-level Semantic Representation Method for {C}hinese)",
author = "Mengxi, Guo and
Endong, Xun and
Meng, Li and
Gaoqi, Rao",
editor = "Sun, Maosong and
Liang, Jiye and
Han, Xianpei and
Liu, Zhiyuan and
He, Yulan",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-1.58/",
pages = "740--749",
language = "zho",
abstract = "{\textquotedblleft}基于参数的语义表示虽取得成就,但符号化的语义表示仍具有不可忽视的意义。我们在语义学基础上,充分考虑符号化语义表示在NLP领域落地中的需求,提出了一种兼具通用性与扩展性的多层次语义表示方法{---}{---}意合图。意合图以事件为核心,由事件结构与实体结构构成,通过多层次语义体系设计,提升与场景结合的能力,并力求对不同层级的语言单元作一贯式表示。在资源建设和相关分析实验中取得良好效果。本文将重点介绍意合图设计理念与多层次语义体系。{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mengxi-etal-2024-yi">
<titleInfo>
<title>意合图:中文多层次语义表示方法\ensuremath*(Parataxis Graph: Multi-level Semantic Representation Method for Chinese)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Guo</namePart>
<namePart type="family">Mengxi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xun</namePart>
<namePart type="family">Endong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Li</namePart>
<namePart type="family">Meng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rao</namePart>
<namePart type="family">Gaoqi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiye</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“基于参数的语义表示虽取得成就,但符号化的语义表示仍具有不可忽视的意义。我们在语义学基础上,充分考虑符号化语义表示在NLP领域落地中的需求,提出了一种兼具通用性与扩展性的多层次语义表示方法——意合图。意合图以事件为核心,由事件结构与实体结构构成,通过多层次语义体系设计,提升与场景结合的能力,并力求对不同层级的语言单元作一贯式表示。在资源建设和相关分析实验中取得良好效果。本文将重点介绍意合图设计理念与多层次语义体系。”</abstract>
<identifier type="citekey">mengxi-etal-2024-yi</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-1.58/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>740</start>
<end>749</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 意合图:中文多层次语义表示方法\ensuremath*(Parataxis Graph: Multi-level Semantic Representation Method for Chinese)
%A Mengxi, Guo
%A Endong, Xun
%A Meng, Li
%A Gaoqi, Rao
%Y Sun, Maosong
%Y Liang, Jiye
%Y Han, Xianpei
%Y Liu, Zhiyuan
%Y He, Yulan
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G zho
%F mengxi-etal-2024-yi
%X “基于参数的语义表示虽取得成就,但符号化的语义表示仍具有不可忽视的意义。我们在语义学基础上,充分考虑符号化语义表示在NLP领域落地中的需求,提出了一种兼具通用性与扩展性的多层次语义表示方法——意合图。意合图以事件为核心,由事件结构与实体结构构成,通过多层次语义体系设计,提升与场景结合的能力,并力求对不同层级的语言单元作一贯式表示。在资源建设和相关分析实验中取得良好效果。本文将重点介绍意合图设计理念与多层次语义体系。”
%U https://aclanthology.org/2024.ccl-1.58/
%P 740-749
Markdown (Informal)
[意合图:中文多层次语义表示方法∗(Parataxis Graph: Multi-level Semantic Representation Method for Chinese)](https://aclanthology.org/2024.ccl-1.58/) (Mengxi et al., CCL 2024)
ACL