@inproceedings{xu-etal-2024-da,
title = "大语言模型开放性生成文本中的职业性别偏见研究(Generated by Large Language Models)",
author = "Zhang, Xu and
Guo, Mengqing and
Zhu, Shucheng and
Yu, Dong and
Liu, Ying and
Liu, Pengyuan",
editor = "Maosong, Sun and
Jiye, Liang and
Xianpei, Han and
Zhiyuan, Liu and
Yulan, He",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-1.61/",
pages = "774--789",
language = "zho",
abstract = "``大语言模型问世以来,在自然语言处理诸多任务上都取得了惊人的表现。但其中可能存在的安全性和公平性问题也引起了人们的重视,特别是模型生成文本可能含有对特定职业、性别等群体的偏见和歧视。本文通过两种性别表征形式,构造了显性和隐性的{''}性别+职业{``}提示语,提示大语言模型生成开放性文本,并从情感极性、词汇丰富度和冒犯性程度三个维度对生成文本的偏见进行分析,评估并比较了传统模型与以ChatGPT为代表的大语言模型中的职业显性性别和隐性性别交叉偏见。结果表明,比起单维度的职业、性别身份信息,更复杂的职业性别交叉身份信息会减少ChatGPT生成文本中的偏见,具体表现为情感极性趋于中性,词汇丰富度提高;ChatGPT对于不同类型的职业性别身份展现出差异的态度,对研究型、艺术型等创造类的职业情感极性更高,对事务型、经管型等与人打交道的职业情感极性偏低;另外,ChatGPT相比之前的GPT-2模型在生成能力和消除偏见上有所进步,在多种组合身份提示下的生成文本更加积极、多样,冒犯性内容显著减少。''"
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2024-da">
<titleInfo>
<title>大语言模型开放性生成文本中的职业性别偏见研究(Generated by Large Language Models)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xu</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mengqing</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shucheng</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dong</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ying</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pengyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sun</namePart>
<namePart type="family">Maosong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang</namePart>
<namePart type="family">Jiye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Han</namePart>
<namePart type="family">Xianpei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liu</namePart>
<namePart type="family">Zhiyuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">He</namePart>
<namePart type="family">Yulan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“大语言模型问世以来,在自然语言处理诸多任务上都取得了惊人的表现。但其中可能存在的安全性和公平性问题也引起了人们的重视,特别是模型生成文本可能含有对特定职业、性别等群体的偏见和歧视。本文通过两种性别表征形式,构造了显性和隐性的”性别+职业“提示语,提示大语言模型生成开放性文本,并从情感极性、词汇丰富度和冒犯性程度三个维度对生成文本的偏见进行分析,评估并比较了传统模型与以ChatGPT为代表的大语言模型中的职业显性性别和隐性性别交叉偏见。结果表明,比起单维度的职业、性别身份信息,更复杂的职业性别交叉身份信息会减少ChatGPT生成文本中的偏见,具体表现为情感极性趋于中性,词汇丰富度提高;ChatGPT对于不同类型的职业性别身份展现出差异的态度,对研究型、艺术型等创造类的职业情感极性更高,对事务型、经管型等与人打交道的职业情感极性偏低;另外,ChatGPT相比之前的GPT-2模型在生成能力和消除偏见上有所进步,在多种组合身份提示下的生成文本更加积极、多样,冒犯性内容显著减少。”</abstract>
<identifier type="citekey">xu-etal-2024-da</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-1.61/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>774</start>
<end>789</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 大语言模型开放性生成文本中的职业性别偏见研究(Generated by Large Language Models)
%A Zhang, Xu
%A Guo, Mengqing
%A Zhu, Shucheng
%A Yu, Dong
%A Liu, Ying
%A Liu, Pengyuan
%Y Maosong, Sun
%Y Jiye, Liang
%Y Xianpei, Han
%Y Zhiyuan, Liu
%Y Yulan, He
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G zho
%F xu-etal-2024-da
%X “大语言模型问世以来,在自然语言处理诸多任务上都取得了惊人的表现。但其中可能存在的安全性和公平性问题也引起了人们的重视,特别是模型生成文本可能含有对特定职业、性别等群体的偏见和歧视。本文通过两种性别表征形式,构造了显性和隐性的”性别+职业“提示语,提示大语言模型生成开放性文本,并从情感极性、词汇丰富度和冒犯性程度三个维度对生成文本的偏见进行分析,评估并比较了传统模型与以ChatGPT为代表的大语言模型中的职业显性性别和隐性性别交叉偏见。结果表明,比起单维度的职业、性别身份信息,更复杂的职业性别交叉身份信息会减少ChatGPT生成文本中的偏见,具体表现为情感极性趋于中性,词汇丰富度提高;ChatGPT对于不同类型的职业性别身份展现出差异的态度,对研究型、艺术型等创造类的职业情感极性更高,对事务型、经管型等与人打交道的职业情感极性偏低;另外,ChatGPT相比之前的GPT-2模型在生成能力和消除偏见上有所进步,在多种组合身份提示下的生成文本更加积极、多样,冒犯性内容显著减少。”
%U https://aclanthology.org/2024.ccl-1.61/
%P 774-789
Markdown (Informal)
[大语言模型开放性生成文本中的职业性别偏见研究(Generated by Large Language Models)](https://aclanthology.org/2024.ccl-1.61/) (Zhang et al., CCL 2024)
ACL
- Xu Zhang, Mengqing Guo, Shucheng Zhu, Dong Yu, Ying Liu, and Pengyuan Liu. 2024. 大语言模型开放性生成文本中的职业性别偏见研究(Generated by Large Language Models). In Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference), pages 774–789, Taiyuan, China. Chinese Information Processing Society of China.