银瞳:基于自适应语义空间学习的中文金融多任务大模型(SilverSight: A Multi-Task Chinese Financial Large Language Model Based on Adaptive Semantic Space Learning)

Zhou Yuhang (周宇航), Li Zeping (李泽平), Tian Siyu (思雨 田), Ni Yuchen (倪雨琛), Zhang Jian (张健), Liu Xiang (刘响), Ye Guangnan (叶广楠), Wu Jie (吴杰), Chai Hongfeng (柴洪峰)


Abstract
“大语言模型正逐渐被用于各种垂直领域,利用其广泛的知识储备来赋能领域中的多种场景。然而,各领域拥有多种待学习的特定任务,且多源异构的领域数据容易引发模型进行任务迁移时的冲突。基于此,本研究提出自适应语义空间学习框架,利用对语义空间内数据的自适应重分布,提升多专家模型的性能及选择效果,并基于此框架训练了一个金融多任务大模型“银瞳”。研究结果表明,我们的框架只需利用10%的数据就能达到接近全数据训练的效果,并拥有较强的泛化表现。”
Anthology ID:
2024.ccl-1.74
Volume:
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
Month:
July
Year:
2024
Address:
Taiyuan, China
Editors:
Maosong Sun, Jiye Liang, Xianpei Han, Zhiyuan Liu, Yulan He
Venue:
CCL
SIG:
Publisher:
Chinese Information Processing Society of China
Note:
Pages:
955–972
Language:
Chinese
URL:
https://aclanthology.org/2024.ccl-1.74/
DOI:
Bibkey:
Cite (ACL):
Zhou Yuhang, Li Zeping, Tian Siyu, Ni Yuchen, Zhang Jian, Liu Xiang, Ye Guangnan, Wu Jie, and Chai Hongfeng. 2024. 银瞳:基于自适应语义空间学习的中文金融多任务大模型(SilverSight: A Multi-Task Chinese Financial Large Language Model Based on Adaptive Semantic Space Learning). In Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference), pages 955–972, Taiyuan, China. Chinese Information Processing Society of China.
Cite (Informal):
银瞳:基于自适应语义空间学习的中文金融多任务大模型(SilverSight: A Multi-Task Chinese Financial Large Language Model Based on Adaptive Semantic Space Learning) (Yuhang et al., CCL 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.ccl-1.74.pdf