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Abstract

The critical process of personalized search is to reorder candidate documents of the current query
based on the user’s historical behavior sequence. There are many types of information contained
in user historical information sequence, such as queries, documents, and clicks. Most existing
personalized search approaches concatenate these types of information to get an overall user
representation, but they ignore the associations among them. We believe the associations of
different information mentioned above are significant to personalized search. Based on a hierar-
chical transformer as base architecture, we design three auxiliary tasks to capture the associations
of different information in user behavior sequence. Under the guidance of mutual information,
we adjust the training loss, enabling our PSMIM model to better enhance the information rep-
resentation in personalized search. Experimental results demonstrate that our proposed method
outperforms some personalized search methods.

1 Introduction

Search engines have emerged as pivotal instruments for users to access information. However, search
engines often yield identical results in response to identical queries, regardless of different information
needs from different users, e.g., some users use the word ”MAC” to refer to ”MAC computer”, in con-
trast, some other users use it to denote ”MAC lipstick”. To tackle this problem, personalized search has
emerged as a highly effective strategy. It models a user’s preferences by user’s historical behavior, and
returns customized ranking results. Personalized search has been proved to provide a better re-ranking
document list and improve user satisfaction (Dou et al., 2007; Bennett et al., 2012; White et al., 2013;
Cai et al., 2014; Ge et al., 2018; Ma et al., 2020; Zhou et al., 2020b).

Prevalent models integrate semantic context from user histories with current queries and docu-
ments. Deep learning models like hierarchical recurrent network with query-aware attention and graph-
augmented approach have advanced the field but typically neglect the interconnectedness of historical
informational units (Ge et al., 2018; Lu et al., 2020).

We believe that capturing contextual relationships between historical queries/documents and their be-
havioral contexts is vital for better personalization. Hence, we introduce an innovative methodology
rooted in Mutual Information Maximization (MIM, elaborated upon in Appendix A). As a form of self-
supervised learning, MIM exploits the inherent correlations present in user historical sequences to blend
different types of data into a cohesive representation. This learning paradigm (Devlin et al., 2019; Zhou
et al., 2020a) enables models to learn from the underlying structure of raw data, creating self-derived
training signals and initializing model parameters through specifically designed optimization objectives.

We present the PSMIM (Personalized Search Mutual Information Maximization) model, incorporat-
ing auxiliary tasks to enhance user representations for personalized search. By exploiting self-supervised
information from user historical sequences, we design three auxiliary tasks to capture the following cor-
relations: (1) the correlation between historical query and historical sequence information, (2) the corre-
lation between historical document and historical sequence information, and (3) the correlation between
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the current query and historical sequence information. These objectives are unified under the framework
of maximizing mutual information, enabling the model to uncover associations among different informa-
tion types in user sequences and adapt to new data or association patterns. By effectively fusing various
user information types through auxiliary tasks, we obtain a richer user historical context representation,
which is then integrated with candidate document representations.

We employ Transformers to capture interactions among the historical behavior sequence, current
query, and candidate documents to compute personalized ranking scores. Our model is trained with
pair-wise ranking loss. Through experiments, we validate the effectiveness of our approach, demonstrat-
ing that our model, PSMIM, outperforms several previous personalized search models.

Our contributions include proposing a personalized search model PSMIM which systematically ad-
dresses inter-associations among user sequence information through auxiliary objectives, and empirically
validating the practical effectiveness and robustness of PSMIM.

2 Related Work

2.1 Personalized Web Search
The essence of personalized search lies in deciphering users’ preferences and traits based on their histor-
ical interactions. Hence, scholars have developed several techniques to extract user-specific details from
historical sequences. Initially, research efforts such as (Dou et al., 2007; Teevan et al., 2011) emphasized
click behavior in user history, proving it to be a straightforward yet insightful tool for predicting user
inclinations. Moreover, many studies (Sieg et al., 2007; White et al., 2013; Harvey et al., 2013; Vu et al.,
2015; Vu et al., 2017) endeavored to formulate user profiles by examining the thematic attributes of doc-
uments within the user’s search history. However, they faced challenges, including high computational
expenses and incomplete categorization.

Recently, deep learning has garnered broad acceptance across disciplines due to its exceptional rep-
resentation of learning capabilities. It successfully uncovers nuanced user preferences in personalized
search contexts, as documented in (Ge et al., 2018; Lu et al., 2019; Yao et al., 2020b; Lu et al., 2020;
Yao et al., 2020a; Ma et al., 2020; Zhou et al., 2020b).

Distinctively, our methodology capitalizes on the interdependencies among historical queries, histori-
cal documents, the current query, and the overall user historical sequence. By doing so, we aim to refine
their representations and thoroughly explore the dynamics between candidate documents and the user’s
historical context, thus contributing to advancements in personalized search.

2.2 Self-supervised Learning
Self-supervised learning techniques (Devlin et al., 2019; Hjelm et al., 2019) leverage auxiliary tasks to
extract meaningful insights from unsupervised data. By generating supervised signals from intrinsic data
relationships, these methods foster effective representations for subsequent tasks. Some self-supervised
frameworks (Hjelm et al., 2019) utilize naturally associated features for visual feature learning. Pre-
trained language models (PLMs) (Devlin et al., 2019) represent a prominent example of self-supervised
applications in the NLP domain.

Mutual Information Maximization (MIM) (Hjelm et al., 2019; Kong et al., 2020) is a self-supervised
learning technique. It operates by splitting input data into multiple perspectives and strives to maximize
mutual information among the representations of these perspectives.

Unlike prior strategies, our work considers correlations among user search history and contextual
information as a self-supervised cue. We present a model utilizing MIM to enhance sequence-level user
information embeddings, thereby boosting personalized search task performance.

3 Problem Definition

First, let us define the personalized search problem. Consider a user’s historical information sequence
H = {P1, P2, . . . }, with each page Pi contains an issued query, a set of documents, and a clicked docu-
ment with its timestamp. Acknowledging that issued queries and their corresponding clicked documents
are more informational, so our study focuses primarily on modeling these two critical types of historical
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data within the sequence. Thus, we can assume a user’s history as H = {(q1, d1), . . . , (qn, dn)}, with n
representing the total count of queries in the user’s history. Given a current query qc and a set of candi-
date documents Dc = {dc1 , dc2 , . . . , dcm}, the personalized search task is to score each document in Dc

according to the current query qc and the user’s historical information sequence H .

4 Our Method

Our method maximizes mutual information across user historical data, including historical queries, his-
torical documents, alongside the current query. Auxiliary tasks help to enhance the model’s capacity to
represent diverse historical information types. Leveraging word-level and sequence-level transformers,
our method effectively encodes the contextual and sequential nuances within user historical data.

4.1 Base Model

Here we introduce the base model upon which our contributions are built. It serves as a solid foundation
to present our method. Due to word polysemy and contextual variations, user historical informaiton
reflects diverse user intentions and interests. So we design it as a hierarchical transformer architecture,
illustrated in Figure 1, which is crucial address the complexities of user historical information.

User historical information includes queries, documents, and timestamps. We use a word-level trans-
former to fuse the context information of the words in a query or a document, and use a sequence-level
transformer to fuse the context information of the queries and the documents, then get a context-aware
representation for a user information sequence. This architecture considers context at both the word and
sequence levels, allowing us to capture the nuances of user interactions with the system over time.
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Figure 1: Base model of PSMIM (Personalized Search Mutual Information Maximization) framework.

The main component of the base model is a two-level context encoder, serving as context encoder for
user history sequence.

The word-level context encoder is a transformer that takes in words from a query or a clicked docu-
ment, and encodes them into a query embedding or a document embedding, preparing for the sequence-
level context encoder. The goal of the word-level context encoder is to learn better representation for a
query or a document, based on its whole text.

Taking a query q as an example (the word-level representation of document is the same as that of a
query): suppose it consists of m words, expressed as q = {w1, w2, . . . , wm}. The word-level transformer
takes in the word list {w1, w2, . . . , wm}, and then we get the embedding of query q.

The sequence-level context encoder is a transformer that takes in word-level embeddings of queries
and documents from user history sequence, and encodes them into a user historical information sequence
embedding. The goal of the sequence-level context encoder is to learn better representation for a user’s
historical information sequence, in other words, user history.
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As we discussed earlier, the queries are usually very concise, sometimes just one word. In this case,
there will still be ambiguity. Users usually put forward a series of queries for a single information re-
quirement. In this process, historical queries and clicked documents provide rich context information to
infer the user’s intention. Therefore, we consider introducing the historical sequence context informa-
tion to help represent the user’s queries. Similarly, historically clicked documents represent the user’s
interest, and the combination of context query and document can better represent the user’s interest in
the documents.

After the word-level context encoder, a query or a document is integrated with the word-level con-
text information. We take all queries and documents as context information to get the sequence-level
representation. Suppose that the user historical information sequence is represented as the following list:

H = {q1, d1, . . . , qt, dt, . . . , qn, dn, qc}, (1)

the sequence-level transformer takes in the sequence list, then we get the embedding of the user historical
information sequence H .

Current query representation: After the current query is sent into the Word-level Transformer as
shown in Figure 1, each word in the current query is integrated with the word context information in the
query. We conduct sum-pooling for all word representations of the query as the final representation. After
the Sequence-level Transformer, the current query representation qHc incorporates information about the
user’s historical intentions and interests from the historical sequence. It should be noted that when
the current query is fed into the Sequence-level Transformer, we only feed the historical information
sequence into the model, and we do not feed the candidate document into the Transformer model.

Candidate document representation: Similar to the processing of the current query, after the can-
didate document is processed through the Word-level Transformer, we get a document representation
that incorporates the word context, and after the sequence-level Transformer, the candidate document
representation dHci is represented with information that incorporates the user’s historical intentions and
interests. Similarly, when candidate documents are sent into the Sequence-level Transformer, we only
consider historical information sequences in the model and do not use the current query in the Trans-
former model.

4.2 Auxiliary Learning Tasks
On the basis above, we design three auxiliary tasks with mutual information maximization using self-
supervised information from user historical sequence to enhance the representation of user information.
These three auxiliary tasks are respectively historical query prediction, historical document prediction
and current query prediction. They model the associations of different information among the user
historical sequence with mutual information maximization. These three auxiliary tasks are constructed
as shown in Figure 2.

4.2.1 Historical Query Prediction
A historical query provides the user’s fine-grained intention at a specific time. Our goal is establishing
the correlation between a historical query and the user’s whole historical sequence, to better represent
the historical query. Existing personalized search models usually concatenate historical queries and
documents, then regrade user historical information as a from-left-to-right sequence, which ignores the
associations between historical queries and the whole sequence. It is also noted that during the training
process, the model can observe the entire sequence of user historical information. Inspired by the model
of BERT, we propose to use the bidirectional information in the historical sequence by a cloze task.

As an illustration, given a user historical sequence H and a historical query qt, we mask the t-th query
qt. Then we take the rest sequence as its surrounding context, which is represented as:

Cqt = {q1, d1, . . . , [mask], dt, . . . , qn, dn, qc}. (2)

Considering the surrounding context Cqt and masking term qt, we treat them as distinct views for learning
the data representation. According to the equations 19 in Appendix A, we minimize the Historical Query
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Figure 2: Three auxiliary tasks (Historical query prediction, Historical document prediction and Current
query prediction) to model the associations of different information among the user historical sequence
with Mutual Information Maximization to enhance the representation of user information.

Prediction (HQP) loss by:

LHQP(Cqt , qt) = f(Cqt , qt)− log

 ∑
q̃∈Q\{qt}

expf(Cqt , qt)

 , (3)

where q̃ denotes the negative sampling query and f(·) is calculated according to the following formula:

f(Cqt , qt) = σ(FS
qt ·WHQP · qWt ), (4)

where WHQP ∈ R∗ is the parameter matrix to be learned, FS
qt is the learned sequence-level representation

using the t-th query position of the user historical information sequence by sequence-level transformer,
and qWt is the sequence-level representation of query qt.

4.2.2 Historical Document Prediction
A clicked documents offers some fine-grained insights matching to the user’s past interest in at a specific
time. Our goal is establishing the correlation between a historical clicked document and the user’s whole
historical sequence, to better represent the clicked document.

Consistently with the previous subsection, given a user historical sequence H , we mask the t-th clicked
document dt, and take the rest sequence as its surrounding, and it is expressed as:

Cdt = {q1, d1, . . . , qt, [mask], . . . , qn, dn, qc}. (5)

We combine the context Cdt and masking dt as two different views. According to the equations in the
19 in Appendix A, we minimize the historical document prediction (HDP) loss by:

LHDP(Cdt , dt) = f(Cdt , dt)− log

 ∑
d̃∈D\{dt}

expf(Cdt , dt)

 , (6)

where d̃ denotes the negative sampling document and f(·) is calculated by:

f(Cdt , dt) = σ(FS
dt ·WHDP · dWt ), (7)

where WHDP ∈ Rd∗d is the parameter matrix to be learned, FS
dt

is the learned sequence-level repre-
sentation using the t-th document position of the user historical information sequence by sequence-level
transformer, and dWt is the word-level representation of document dt.
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4.2.3 Current Query Prediction
The current query reflects the user’s current intent. Our goal is establishing the correlation between
the current query and the user’s whole historical sequence, to better represent the user’s current intent.
Similarly, we mask the current query qc and take the rest of the information sequence as its surrounding
context Cqc , then we minimize the current query prediction (CQP) loss by:

LCQP(Cqc , qc) = f(Cqc , qc)− log

 ∑
q̃∈QH

expf(Cqc , qc)

 , (8)

where q̃ denotes the negative query sample and f(·) is calculated according to the following formula:

f(Cqc , qc) = σ(qSc ·WCQP · qWc ), (9)

where WCQP ∈ Rd∗d is the parameter matrix to be learned, FS
qc is the learned sequence-level represen-

tation at the current query position in the user information sequence by sequence-level transformer, and
qWc is the word-level representation of query qc.

4.3 Candidate Document Score

In our method, given a current query q and a candidate document d, the score of the candidate document
consists of two parts: the personalized relevance p(dH , qH) and the ad-hoc relevance p(d, q). As for
the personalized relevance p(dH , qH), we obtain the dH of a candidate document integrating historical
sequence information and the qH of the current query through our model. After sum-pooling, our model
acquire the integrated word-level context representation dWsum , upon which we conduct interaction with
the current query qH . Finally, we use one hidden layer MLP to automatically adjust the weights of
various parts of these scores as below:

p(dH , qH) = Φ(S(qH , dH), S(qH , dWsum)), (10)

where, S(·) calculates similarity based on vector representation. In our work, we specifically employ
cosine similarity.

The ad-hoc relevance p(d, q) is computed through term matching between the current query and the
candidate document, augmented by the context-aware word-level representations qW and dW . In addi-
tion, we extract the manual feature F (q, d) of the clicks and topic for each document. These features are
also weighted using one hidden layer MLP, as shown below:

p(d, q) = Φ(I(q, d), I(qW , dW ), ϕ(F (q, d))), (11)

where I(·) is based on the similarity of interactions. We adopt the KRNM (Xiong et al., 2017) method
to implement the interaction. Specifically, given a query-document pair, we use the cosine similarity of
each term in the query and document to construct an interaction matrix M . Then we use k kernels for
matches. The final matching score KNRM(M) is obtained by aggregating them using one hidden layer
MLP.

KNRMk(M) = ϕ(K1(M),K2(M), . . . ,Kk(M)), (12)

Kk(M) =
∑
i

log

∑
j

exp

(
(Mij − µk)

2

2σ2
k

) , (13)

where µk is distributed between -1 and 1 depending on the number of kernels, and σk is set to 0.1.
Finally, we re-rank the candidate documents according to the final relevance score to obtain personal-

ized search results that meet the users’ needs.
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4.4 Optimization Objective
In this section, we detail our model’s optimization objective and the parameter configurations.

Ranking Loss. Many algorithms train the ranking task in pair-wise mode (Bennett et al., 2012; White
et al., 2013; Ge et al., 2018; Lu et al., 2019; Yao et al., 2020b; Lu et al., 2020; Yao et al., 2020a; Ma et
al., 2020; Zhou et al., 2020b). Each pair consists of a clicked document and an unclicked document, and
the optimization goal is to maximize the gap in their scores. In particular, given a clicked document di
and an unclicked document dj , di is more relevant than dj , and the prediction probability is p(di|q,H)−
p(dj |q,H). The Ranking loss is the weighted cross-entropy between the ground-truth label pij and the
predicted probability pij :

Lrank = −|λij |
(
pij log pij + pji log pji

)
, (14)

where the weighting factor λij represents the impact on ranking quality when documents di and dj swap
positions.

Auxiliary Task Losses. As mentioned above, we designed three self-supervised auxiliary tasks, each
associated with a loss function: LHQP, LHDP, and LCQP. We minimize the loss functions of the three
auxiliary tasks together to update the parameters of our model. It should be noted that our model param-
eters are shared for the auxiliary and ranking tasks. The total loss of auxiliary tasks is as follows:

Laux = z1LHQP + z2LHDP + z3LCQP, (15)

where z1, z2 and z3 are the hyperparameters that control the weights.
Finally, we minimize the combination of these two losses, adjusted by a hyper-parameter α:

Ltotal = Lrank + αLaux. (16)

5 Experiments

5.1 Dataset and Evaluation Metrics
Our study conducts experiments on the AOL dataset (Pass et al., 2006). The statistical details of the AOL
dataset are summarized in Table 1.

Table 1: Statistics of the dataset
Type AOL dataset

#Days 91
#Users 110,439
#Queries 736,454
Average query length 2.87
Average #click per query 1.11

The AOL dataset includes three months of user queries and corresponding clicked documents, fitting
for personalized search purposes. Each user record includes an anonymous user ID, session ID, query,
document, and click labels. We partition each user’s data temporally into historical and experimental
datasets. Historical data, encompassing the initial five weeks, serves as personalized historical informa-
tion for each user’s corresponding experimental data. The experimental data, covering the final eight
weeks, is subsequently divided into training, validation, and testing sets following a 6:1:1 split ratio.

Given that the AOL dataset provides only clicked documents, we adhere to the methodology outlined
in (Ahmad et al., 2018) and utilize the BM25 algorithm to identify the top-scoring candidate documents.
Similarly, adopting the practices in (Ahmad et al., 2019; Huang et al., 2018), we extract 50 candi-
date documents per query in the testing set and five candidates per query in the training and validation
sets. To ensure compliance with the fundamental principles of personalized search, we eliminate users
whose historical data or training set is void. Furthermore, we exclusively use document titles for rele-
vance calculations. In our study, we classify clicked documents in the AOL dataset as relevant, while
the rest irrelevant. To assess the performance of various models, we employ three widely used met-
rics that gauge ranking quality: Mean Average Precision (MAP), Mean Reciprocal Rank (MRR), and
Precision@1 (P@1). More implementation details are listed in Appendix B.
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5.2 Baselines
We display the original ranking performance from the dataset and take several traditional and personal-
ized search models as baseline models.

BM25 (Robertson and Zaragoza, 2009). As mentioned above, we use the BM25 algorithm to get one
fundamental ranking.

KNRM (Xiong et al., 2017). This model conducts a kernel-pooling technique on a word-level simi-
larity matrix to extract soft match features in multiple granularities. These features are then exploited by
a pairwise Learning-to-Rank (LTR) algorithm to derive the final ranking score.

Conv-KNRM (Dai et al., 2018). In this model, a convolution layer is added based on KNRM to
construct the n-gram soft matches, and the context information of words is added.

Bert (Devlin et al., 2019). We input the query and document simultaneously into a pre-trained BERT
model and extract the final “[CLS]” token’s output as the matching feature to compute the matching
score.

P-Click (Dou et al., 2007). This model utilizes the click frequency and initial position of candidate
documents in the user’s historical sequence as personalized features for document re-ranking It has a
good performance on user’s refinding behavior.

SLTB (Bennett et al., 2012). In this model, click features, topic features, time features, and location
features are taken as the features of personalized search. It utilizes a learning-to-rank approach to achieve
document re-ranking.

HRNN (Ge et al., 2018). The model uses the hierarchical recurrent neural network and attention
mechanism to model the historical information related to the current query and constructs the user profile
based on the current query for the personalized search.

PSTIE (Ma et al., 2020). This model considers using time interval information in history to enhance
the performance of the personalized search.

HTPS (Zhou et al., 2020b). This model divides the user history into long-term and short-term histories
to disambiguate the current query and designs a personalized language model task to improve the model’s
effectiveness. Since the word embedding of most personalized search methods is fixed, we keep the word
embedding static without fine-tuning for a fair comparison.

5.3 Experimental Results
We categorize our baseline models into two main groups: traditional search methods and personalized
search methods. As shown in Table 2, our proposed personalized search model PSMIM surpasses tradi-
tional search models and other personalized search methodologies, outperforming several counterparts.

Table 2: Overall performance of all models on AOL dataset. “†” indicates the model outperforms all
baselines significantly with paired t-test at p <0.05 level. Best results are shown in bold.

Task Model MAP MRR P@1

Traditional Search

BM25 .250 -62.80% .258 -62.40% .148 -75.05%
KNRM .429 -36.16% .439 -36.01% .271 -54.31%
Conv-KNRM .474 -29.46% .485 -29.31% .327 -44.86%
BERT .483 -28.13% .493 -28.14% .335 -43.51%

Personalized Search

P-Click .422 -37.20% .431 -37.17% .378 -36.26%
SLTB .511 -23.96% .524 -23.62% .469 -20.92%
HRNN .544 -19.05% .557 -18.80% .484 -18.39%
PSTIE .564 -16.07% .577 -15.89% .503 -15.18%
HTPS .672 - .686 - .593 -
PSMIM .689† +2.53% .703† +2.48% .610† +2.87%

Subsequently, these personalized search methods can be divided into two categories: those based on
user profiles (P-Click, SLTB, HRNN and PSTIE), and context-aware approaches (HTPS and PSMIM).
By comparing context-aware personalized methods with those based on user profiles, we find that HTPS
and PSMIM are superior to previous personalized search models. This finding emphasizes the impor-
tance of historical context.
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Further, we contrast our model PSMIM against context-aware model HTPS. As evidenced in Table 2,
our model excels over preceding personalized search models. Compared with the benchmark HTPS,
our model exhibits statistically significant enhancements across all evaluation metrics, as confirmed by
paired t-test at a p < 0.05 significance level. Significantly, on the AOL dataset, PSMIM records a notable
improvement over HTPS with a 2.53% increase in MAP, a 2.48% boost in MRR, and a 2.87% rise in
P@1. These results prove that our method is effective and robust.

In conclusion, the experimental outcomes affirm that accounting for the interconnections within user
sequence information and employing context-aware candidate document representations effectively en-
hances the performance of personalized search. To further dissect the functionality of our model compo-
nents, we conduct an ablation study and some further experiments in the upcoming subsections.

5.4 Discussion
5.4.1 Ablation Study
Our PSMIM model includes several essential components: the current query prediction task (CQP), the
historical query prediction task (HQP), the historical document prediction task (HDP), and candidate
document representation as historical context information (CDC). To prove the effectiveness of these
main components in the PSMIM model, we perform several ablation experiments. We present the ex-
perimental results in Table 3 and have some discussions. Specifically, in setting PSMIM without CQP,

Table 3: Results of ablation experiments.
Model MAP MRR P@1

PSMIM 0.6887 0.7029 0.6096
w/o. CQP 0.6789 0.6932 0.5976
w/o. HQP&HDP 0.6713 0.6853 0.5928
w/o. CDC 0.6800 0.6939 0.5999

we remove the current query prediction task of the PSMIM model and then train and test the model. In
setting PSMIM without HQP&HDP, since the historical query and historical document are inseparable
sources for deriving context information, we concurrently remove the historical query prediction and his-
torical document prediction tasks from the original process. In setting PSMIM without CDC, we replace
the candidate document representation integrating historical context information with word embedding
representation of the original candidate document.

In Table 3, it is evident that the performance of our model diminishes under the three implemented
ablation strategies, falling short of the complete model’s performance. Notably, the removal of his-
torical query and historical document prediction tasks leads to the most substantial decrease in MAP,
confirming the necessity and significance of capturing associations within users’ historical interaction
sequences. Discontinuing the current query prediction task also impairs the results, pointing to the im-
portance of strengthening the representation of the current query for improved performance. Moreover,
excluding historical context into candidate document embeddings leads to reduced model performance,
highlighting the benefits of exploiting personalized candidate document representations.

5.4.2 Effect of Short-term and Long-term History
To validate the robustness of our model, akin to HTPS (Zhou et al., 2020b), we partition user history into
short-term and long-term segments, and scrutinize the performance of our model under both short-term
and combined short-term and long-term histories scenarios.

HTPS-S. We select HTPS, a model surpassing most prior personalized search approaches, as our
baseline. We only use short-term history during training and testing the model.

PSMIM-S. We only use short-term user history during training and testing our model.
The results are shown in Table 4. It could be seen from the experimental results that our model

PSMIM with all user history significantly outperforms the model HTPS (Zhou et al., 2020b), and the
model PSMIM-S with short-term history still outperforms the model HTPS in terms of MAP and MRR,
which can prove the robustness of our model.
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Table 4: Performance of models with short and long term historys. † indicates the model outperforms
baselines significantly with paired t-test at p-value < 0.05.

Model MAP MRR P@1

HTPS-S 0.6280 0.6410 0.5210
HTPS 0.6720 0.6860 0.5930
PSMIM-S 0.6737† 0.6877† 0.5921
PSMIM 0.6887† 0.7029† 0.6096†

However, PSMIM-S exhibits marginally lower performance than HTPS (Zhou et al., 2020b) on P@1
metric. A possible reason is that the model PSMIM-S with the short-term history could not model the
overall historical interests of a user.

5.4.3 Performance of Ambiguous and Non-ambiguous Query Sets

Typically, a user’s queries fall into two categories: navigational and informational. The navigational
queries usually have more precise query intent, and the informational queries are usually more ambigu-
ous. Studies [8] have shown that it is more necessary to personalize the search results for informational
queries, which typically exhibit higher click entropy. To verify the robustness of our model, we follow
the setting in [29], computing click entropy for queries, using a threshold of 1.0 to separate queries into
two subsets, and subsequently contrasting the results with the baseline model HTPS.

From the results in Table 5, our model outperforms the baseline model HTPS, especially on the queries
with larger click-entropy. It indicates that our model can learn better user information representation
when facing ambiguous queries.

Table 5: Performance of Ambiguous and Non-Ambiguous Query Sets.

Query sets on Ambiguous Query Set on Non-Ambiguous Query Set

HTPS 0.3322 0.4240
PSMIM 0.3540 0.4421

5.4.4 Performance of Repeated and Non-repeated Query Sets

A user’s queries could be classified into repeated and non-repeated queries. It is easy to infer the user’s
intent based on the same queries in the user history for repeated queries. Non-repeated queries, however,
offer limited information based on their historical clicked documents. In this situation, a better query
representation may bring some performance benefits.

As the results are shown in Table 6, our model outperforms the baseline model HTPS on both repeated
queries and non-repeated queries. This indicates that our model can better infer the intent when facing a
new query with a better information representation.

Table 6: Performance of Repeated and Non-Repeated Query sets.
Model on Repeated Query Sets on Non-Repeated Query Sets
HTPS 0.6048 0.2576
PSMIM 0.6310 0.2908

6 Conclusion

In this paper, we propose a personalized search model PSMIM under the guidance of mutual information,
and design three auxiliary tasks to obtain the associations among different types of data from user history.
Experiment results verify the effectiveness and robustness of our personalized search model PSMIM.
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Appendix A Mutual Information Maximization

Mutual information maximization is a pivotal strategy for integrating diverse forms of historical infor-
mation. Rooted in information theory, mutual information (MI) is a valuable tool for quantifying the
dependence between random variables. Its mathematical definition is expressed as:

I(A,B) = P (A)− P (A|B) = P (B)− P (B|A). (17)

Suppose A and B are different views of the input data, such as a word and its context in NLP tasks or a
document and its historical context sequence in personalized search. Let f be a function receiving A = a
and B = b as inputs. The primary aim of maximizing MI is to tune the parameters of f to maximize
the mutual information I(A,B), thereby extracting the most discriminative and salient attributes of the
samples.

The essence of effective feature extraction involves distinguishing a sample from the entire dataset by
capturing its distinctive information. By maximizing mutual information, one can isolate and harness
such unique characteristics. However, when f constitutes neural networks or other encoders, directly
optimizing MI is usually tricky (Paninski and Liam, 2014). Thus, a common workaround is to find a
tractable lower bound for I(A,B) that closely approximates the target function. A specific lower bound
proved to be effective in practice is InfoNCE (Logeswaran and Lee, 2018; van den Oord et al., 2018),
which is based on noise contrast estimation (Gutmann and Hyvärinen, 2012). InfoNCE is defined as
follows:

InfoNCE = Ep(A,B)

fθ(a, b)− Eq(B̃)

log
∑
b̃∈B̃

expfθ(a, b̃)

+ log|B̃|, (18)

where a and b are different views of the input data, and fθ ∈ R is a function whose parameter is θ (for
example, dot product result expressed by word and context or cos distance). B̃ is a set of samples taken
from the distribution q(B̃). The B set contains a positive sample b and |B̃|−1 negative samples. Learning
representation based on this goal is also called contrastive learning.

We can see that the InfoNCE is analogous to the cross-entropy form the formula below when B̃ can
take all possible values of B (i.e., B̃ = B) and they are uniformly distributed, maximizing InfoNCE is
analogous to maximize the cross-entropy loss:

Ep(A,B) =

fθ(a, b)− log
∑
b̃∈B

expfθ(a, b̃)

 . (19)

Appendix B Implementation Details

The parameters of our model PSMIM are set as follows: The word embedding size is 100. The hidden
size of the transformer layer in our base model is 512. The number of heads in multi-head attention is
8. The size of the MLP hidden layer is 256. In the experiment, we set the hyperparameters z1, z2 and
z3 in Formula 15 of three auxiliary tasks to 1.0. We use the Adam optimizer to minimize the final loss
Ltotal, and the learning rate of our optimizer is 1e−3. In the experiment, we set α in Formula 16 to 1.0.
In addition, the number of matched cores for the KRNM model is 11.
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