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Abstract

There is a continuous and explosive growth of multimodal data. Efficient cross-modal hash-
ing retrieval is of significant importance in conserving computational resources.To further en-
hance the attention to informative data within modalities and capture the semantic correlations
in cross-modal data, we propose an enhanced deep Joint-Semantics Reconstructing Hashing al-
gorithm, which is the Joint Similarity Guidance Hash Coding Based on Adaptive Weight Mixing
Strategy(JSGHCA). The algorithm focuses on delving deeper into the correlations of the data in
cross-modal. We introduce the adaptive weight mixing strategy to construct the semantic affinity
matrix, so that the matrix can identify each modal data with specific weight in each batch. At
the same time, in the process of the hash code generation, we introduce collaborative attention
mechanism. It helps the model to pay more attention to the local information of each modality,
thereby capturing the semantic features within each modality more accurately. Additionally, it
enables the model to jointly process the attention across different modalities and extract shared
semantic features more precisely. Experimental results show that the proposed model is signifi-
cantly better than the deep joint semantic reconstruction hash algorithm on multiple benchmark
datasets.

1 Introduction

With the rapid development of digital technology, multimodal information is omnipresent in our lives.
On the internet, various modalities of data such as text, images, videos, and audio provide us with a rich
information experience. The diverse structures of different modalities of data give rise to data hetero-
geneity. This heterogeneity poses a new challenge: how to effectively establish semantic associations
and perform retrieval across different modalities?

Cross-modal retrieval is divided into cross-modal real-value retrieval and cross-modal hash retrieval.
In cross-modal real-value retrieval, the dimensionality of real-valued vectors is relatively high, requiring
large-scale matrix operations and high computational complexity. Cross-modal hash retrieval aims to
eliminate differences between modalities and project them into a low-dimensional common Hamming
space for retrieval tasks. In this regard, Deep Joint-Semantics Reconstructing Hashing (DJSRH (Su et
al., 2019)) marks a significant milestone. It optimizes cross-modal semantic relationships by introducing
a joint semantic affinity matrix. However, there is interference from irrelevant information of the two
modalities during the synthesis of the joint semantic affinity matrix. Additionally, there are challenges in
capturing intra-modal local information and utilizing cross-modal related information during hash code
generation.

Considering these limitations, we propose a Joint Similarity Guidance Hash Coding Based on Adap-
tive Weight Mixing Strategy (JSGHCA) algorithm. The traditional fixed weight allocation strategy may
be affected by irrelevant information when processing multimodal data, leading to a decrease in retrieval
accuracy. To this end, we propose a dynamic weight allocation method that can dynamically adjust
weights based on the importance of modal information within the data batch. Through this method, we
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can more accurately identify and emphasize useful modal information when constructing a joint semantic
affinity matrix, while filtering out useless information, thereby improving the accuracy and robustness of
retrieval. When dealing with the local information within a single modality and capturing the complex
semantic correlation between different modalities, the existing methods often have shortcomings. To
address this issue, we introduce an enhanced local attention mechanism (Single Attention Mechanism,
Si-Attention) that focuses more on key information within the modality during the feature extraction
stage. Meanwhile, we also designed a cross modal semantic capture module (Joint Attention Mecha-
nism, Jo-Attention) that can effectively capture and utilize the semantic associations between different
modalities during the hash code generation process. Through these improvements, our model can gen-
erate richer and more accurate hash codes, thereby improving the performance of cross modal retrieval.
The main contributions of this research are as follows:

• We introduce an adaptive weight mixing strategy. This approach dynamically adjusts weights based
on the importance of modal information within each data batch, enhancing the retrieval process and
filtering out irrelevant information.

• We introduce an attention mechanism (Collaborative Attention Mechanism) to ensure that the net-
work primarily focuses on core information, thereby significantly enhancing the accuracy and rel-
evance of hash encoding. We introduce an enhanced local attention mechanism Si-Attention that
focuses on key information within individual modalities during the feature extraction phase. Addi-
tionally, we design a joint attention mechanism Jo-Attention to effectively capture and utilize the
complex semantic correlations between different modalities in the hash code generation process.

• We conduct systematic experimental validation and performance evaluation, encompassing a series
of comprehensive experiments aimed at thoroughly assessing the performance and effectiveness
of JSGHCA. Through this approach, we aim to provide a more powerful, flexible, and practical
hashing solution for cross-modal data, bringing new breakthroughs to the field of cross-modal in-
formation retrieval.

2 Related Work

Cross-modal retrieval, an extension of single-modal retrieval, tackles the intricate relationships within
multimodal data. Recently, cross-modal hashing learning has been extensively employed to reduce fea-
ture storage and simplify retrieval.Cross-modal hashing learning can be divided into supervised and
unsupervised methods based on the need for semantic supervision.

2.1 Supervised cross-modal hashing learning
Supervised cross-modal hashing learning utilizes source data and label information to explore the sim-
ilarity between image and text modalities. For example, SDDH (Qin et al., 2021) employs orthogonal
and equilibrium constraints to maintain modality similarity, QDCMH (Liu et al., 2021) constructs a
quadruplet loss function to preserve semantic correlation, OLCH (Yi et al., 2021) acquires semantic la-
bels through multi-class classification, NSDH (Yang et al., 2021) utilizes a three-layer network to extract
features and generate hash codes, while MSLF1 (Cheng et al., 2021) maximizes shared factors to obtain
effective hash codes. Despite performing well on labeled cross-modal data, these methods heavily rely
on large annotated datasets, thus limiting their practical applicability.

2.2 Unsupervised cross-modal hash learning
Unsupervised cross-modal hashing learns binary codes by leveraging modality correlations without the
need for class labels. Some methods rely on constructing instance-level affinity graphs or similarity
matrices to deeply analyze relationships between instances, revealing valuable similarity information.
For instance, SIM (Jia et al., 2020) builds a node similarity graph, utilizing the triangle inequality prin-
ciple and path averages to determine distances between nodes. SRCH (Wang et al., 2021) constructs
K-nearest neighbor graphs for image and text instances, where the new graph only contains consistent
relationships. UGACH (Zhang et al., 2018) creates graphs to represent relationships between image and
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text instances, typically requiring the pre-construction of the entire training set’s graph structure, which is
time-consuming and requires large storage space, limiting its application to large-scale data. In practical
applications, such methods need to balance accuracy and computational feasibility.

Another type of unsupervised cross-modal hashing method first extracts real-valued features from
different modal data and constructs a similarity matrix of these features through feature multiplication.
Then, it maps the data to a hash space using a hash function and constructs a similarity matrix of hash
features. In the loss function, this method compares these two similarity matrices and optimizes the
hash function by minimizing the difference between them, ensuring that the generated hash codes better
preserve the similarity relationships between the original data. For example, the DJSRH (Su et al.,
2019) method integrates neighborhood information of multi-modal data by constructing a joint semantic
correlation matrix and trains a network to generate binary codes that can reconstruct these semantic
relationships to the maximum extent. DGCPN (Yu et al., 2021) extracts global similarity information
by constructing a static KNN graph, combines local similarity of training batches, constructs a real-
valued feature similarity matrix, then transforms it into a hash feature similarity matrix, and iteratively
optimizes cross-modal hashing learning using both. DSAH (Yang et al., 2020) adopts an encoder-decoder
structure to convert real-valued features of images and text into hash features, maintaining the similarity
relationships between data by constructing and comparing similarity matrices of real-valued features
and hash features in the loss function. Existing multi-modal retrieval methods still exhibit instability
when dealing with large-scale, unbalanced, or noisy data, and many methods are limited in practical
applications.

Compared to existing cross-modal retrieval methods, our approach integrates attention mechanisms,
introduces a novel adaptive weighting strategy, and employs batch processing during model training,
leading to performance improvements across various aspects.

3 Method

Figure 1: The structure of Cross-modal Hash Retrieval method JSGHCA

The structure of the JSGHCA method is shown in the figure1. At first, JSGHCA constructs simi-
larity matrices for image features and text features based on the instances in each training batch. The
model obtains the contribution degree of each modality in the overall similarity calculation by using the
adaptive weighting strategy. We then combine the two similarity matrices according to the weights calcu-
lated within each batch, paying attention to the associations within and between modalities. In addition,
JSGHCA uses pre-training network combined with collaborative attention mechanism to obtain hash
features and construct hash similarity matrix, which is compared with the similar matrix of real-valued
features. The model is trained by a stepwise training strategy. Firstly, the network of various modalities
is trained separately, and then the cross-modal network is trained uniformly. The JSGHCA method is a
comprehensive approach that combines the advantages of both deep learning and hashing techniques.
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Figure 2: The extraction of the image and text features

We represent the image text pair as pi = (vi, ti), and the batch size is represented as m, then the
whole set is P = p1, p2, · · · pm. For real-valued features, image and text are respectively represented
as FV ∈ Rm×d and FI ∈ Rm×d, where d represents dimension. For hash features, image and text are
respectively represented as BV ∈ Rm×h and BT ∈ Rm×h, where h represents the hash code dimension.

JSGHCA uses pre-trained model AlexNet (Krizhevsky et al., 2012) to extract image feature FV , and
the Bag-of-words (Gálvez-López and Tardos, 2012) model is used to extract text feature FT . The formula
is as follows:

F∗ = E(∗, θ∗), ∗ ∈ V, T (1)

The hash feature length is set to a fixed value. Before converting a real-valued feature to a hash feature
using function sgn(·), the dimension of the real-valued feature is reduced to the length of the hash code
through the full join layer. The formula is as follows:

B∗ = sgn(F∗), ∗ ∈ V, T (2)

When sgn(·) is used as an activation function, all non-zero inputs result in zero gradient, known as the
vanishing gradient problem. To address this, we employ the scaled tanh(·) function instead of sgn(·)
because it indefinitely approximates sgn(·) as it approaches the limit.The formula is as follows:

sgn(x) =

{
1, x ≥ 0
−1, x < 0

(3)

lim
x→∞

tanh(δx) = sgn(x) (4)

where the parameter δ will increase with the increase of training times.

3.1 Adaptive weights Mixing strategy
The Unified Semantic Affinity Matrix is a two-dimensional matrix used for comparing multimodal data
by mapping different data modalities into a shared semantic space. Assuming we have two modalities
of feature representations FV and FT , we can initially compute the similarity between them. After
normalizing FV , FT to F ′

V , F ′
T which has unit ℓ2−norm each row, we can calculate the cosine similarity

matrices SI = F ′
IF

′T
I ∈ [−1,+1]m×m and ST = F ′

TF
′T
T ∈ [−1,+1]m×m to describe the original

neighborhood structure for the input images and texts respectively. Once we have the similarity matrix
for each modal, we can calculate the adaptive weights. These weights can be calculated according to the
similarity matrix of each modal, which can reflect the degree of contribution of each modal to the overall
similarity calculation. Specifically, we can calculate adaptive weights using the following formula:

wi =
Sirowavg

Sitotalavg

×
Stotalavg

Stotalrowavg

(5)

Where wi is the adaptive weight of modality I, Si is the similarity matrix of modal I, and Stotal is
the sum of all modal similarity matrices. Through this formula, we can get the adaptive weight of each
modality, which can be adjusted according to the similarity of each modality.

Algorithm1 Outlines the whole process of our proposed adaptive weight strategy.
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Algorithm 1 Adaptive weight mixing strategy(AWM).
Input: Similarity matrix of two modalities SI and ST
Output: The similarity matrix after fusion FusionSimMatrix
1: Calculate the row average and total average for each modality:

row avg1 = calculate row average(SimMatrix1)
total avg1 = calculate total average(row avg1)
row avg2 = calculate row average(SimMatrix2)
total avg2 = calculate total average(row avg2)

2: Calculate the adaptive weights:
adaptive weight1 = row avg1/total avg1
adaptive weight2 = row avg2/total avg2

3: Fusion similarity matrix:
FusionSimMatrix = zeros((len r(SimMatrix1), len r(SimMatrix2)))
for i in range(len r(SimMatrix1)):
for j in range(len r(SimMatrix2)):
FusionSimMatrix[i, j] = SimMatrix1[i, j]∗adaptive weight1[i]+SimMatrix2[i, j]∗adaptive weight2[i]

4: return FusionSimMatrix

When we have adaptive weights for different modalities, we can utilize them to adjust and fuse the
weights between modalities. By multiplying the weight of each modal by the corresponding adaptive
weight, we obtain the final weight for each modal in the overall similarity calculation. Subsequently,
combining the feature vectors and weights from different modalities allows us to achieve richer repre-
sentations. Adjusting the weights and similarity calculation methods further optimizes the computation
of the joint semantic affinity matrix, which reflects semantic similarity between modalities and guides
subsequent tasks. JSGHCA introduces an adaptive weight strategy to dynamically assign weights to each
modality, considering not only the inherent importance of features but also ensuring balanced represen-
tation across modalities. This approach enhances the performance of cross-modal retrieval, capturing
inter-modality correlations effectively, and providing a more reliable foundation for hash coding.

3.2 Collaborative Attention Mechanism

The attention mechanism is used before hashing encoding forms a similarity matrix. Firstly, feature
learning module is used to extract the features of image and text respectively. Considering that some
information in the original data is useless for retrieval and in order to reduce the interference of these
noises, this paper adds a local attention module to the network to extract the key information of each
modality separately. Finally, semantic hash code is learned through semantic hash code generation mod-
ule. In the process of hash code learning, joint attention mechanism is used to enhance the relationship
between image and text.

Figure 3: The structure of Collaborative Attention Mechanism

Si-Attention includes AV and AT , and extracts images using an attentional mechanism of local feature
extraction. For the attention operation of the image part, the image feature map Xv

i obtained above is first
input into the convolution layer with the convolution kernel size of 1×1 for compression, and the matrix
Mv

i = conv(Xv
i ),M

v
i ∈ R(H×W ) is obtained. Then perform sigmoid activation function operation on

Mv
i to get the attention mask M̂v

i = sigmoid(Mv
i ),M̂

v
i ∈ R(H×W ). Finally, Xv

i dot the attention mask
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M̂v
i to get the key feature of the i − th image Y v

i = M̂v
i × Xv

i ,Y v
i ∈ R(H×W ), which represents the

Kronecker product. The whole process of attention processing for the i−th image data can be simplified
as Y v

i = Av(Xv
i ).

M t
i = fc(M t

i )

M̂ t
i = sigmoid(M t

i )

Y t
i = M̂ t

i ×Xt
i

(6)

For the attention operation of the text part, the key features Y t
i of the i− th text feature vector Xt

i can
be obtained in the same way, which is implemented as follows(equation(6)):

Where fc is a fully connected layer with 8192 neurons, M t
i , M̂ t

i ,Y t
i ∈ R(H ×W ). The whole process

of attention processing for the i− th text feature vector can be simplified as Y t
i = At(Xt

i ).
In order to generate more consistent hash code and reduce the information imbalance between image

and text modules, a joint attention mechanism is added to this module, which uses the features learned by
one module to guide the hash code training of another modal. Specifically, the generated image and text
features Qv

i and Qt
iare input into the joint attention mechanism, and vectors Ov

i = fc(Qv
i ),O

v
i ∈ Rc and

Ot
i = fc(Qt

i),O
t
i ∈ Rc are generated through the full connection operation with c neurons and the ReLU

activation function operation. The softmax function is then used for Ov
i and Ot

i respectively to obtain
the attention distributions Ôv

i and Ôt
i , i.e. Ôv

i = softmax(Qv
i ), Ô

v
i ∈ Rc and Ôt

i = softmax(Qt
i),

Ôt
i ∈ Rc. Finally, Qv

i and Qt
i features of the image and text are multiplied by the attention distribution

Ôt
i and Ôv

i to update the features, respectively, and the semantic hash code hvi ∈ Rc and hti ∈ Rc of the
image and text is obtained, which is specifically expressed as follows:

hv
i = Ôt

i ⋄Qv
i

ht
i = Ôv

i ⋄Qt
i

(7)

Where ⋄ represents the Hadamard Product. According to formula (7), it can be found that in the
proposed joint attention mechanism, attention distribution Ôt

i can be used to guide image semantic hash
code hvi generation, while attention distribution Ôv

i can be used to guide text semantic hash code hti
generation.

3.3 Joint similarity matrix guides hash coding
By constructing a joint semantic affinity matrix S, we aim to uncover the latent semantic relationships
among batch input instances. This is achieved by minimizing the reconstruction error between the de-
sired neighborhood matrix S and the hash code structure cos(BV , BT ) to be learned, thereby acquiring
semantically relevant binary codes. The main functions of this approach are twofold: on the one hand,
the introduction of hyperparameter µ enhances the flexibility of the reconstruction process, allowing it
to better adapt to diverse data requirements; on the other hand, it constructs a specific similarity value
among modalities to facilitate learning.

J = min
BV ,BT

|| µS − cos(BV , BT ) ||2F

s.t.S = C(SV , ST ) ∈ [−1,+1](m×m)
(8)

When we use hash coding to represent the similarity between images and texts, for instance, there are
two pictures, one of a sunset beach and the other of a sunrise beach. They are actually very similar, but
according to strict similarity measures, they may not be classified into the same category. The hyperpa-
rameter µ acts like a ”flexibility” adjuster. When we feel that the judgment criteria are too strict, we can
increase µ to relax the standards; conversely, if we want to more accurately determine similarity, we can
decrease µ. In this way, we can more accurately capture the true similarity relationship between images
and texts.

The focus of the reconstruction framework is on maximizing the reconstruction of specific similarity
values in S, rather than merely emphasizing their relative order. This approach is less sensitive to the
composition of each randomly sampled training batch, making it more suitable for batch processing input
methods. This article adopts the aforementioned method as the core model to establish comprehensive
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and systematic training objectives. In addition to integrating the multimodal reconstruction components
of BV and BT in the framework, it also strengthens the internal modal reconstruction. This is because
according to previous research, fully considering the internal and inter-connectivity during cross-modal
network training can effectively improve retrieval efficiency. Therefore, this article utilizes the following
optimized training objectives for JSGHCA.

J = min
BV ,BT

|| µS − cos(BV , BT ) ||2F +λ1 || µS − cos(BV , BT ) ||2F +λ2 || µS − cos(BV , BT ) ||2F (9)

λ1 and λ2 are tradeoff parameters for balancing inter-modal reconstruction and intra-modal recon-
struction. Introducing the hyperparameter µ into the framework makes the reconstruction more flexible.
Compared to the Laplacian-constrained model, selecting specific similarity values for reconstruction is
more compatible with batch training.

3.4 Training and Objective Function

Image and text belong to two different modalities, but the previous work unified the training of the data of
these two modalities, ignoring their respective rules and characteristics. Therefore, the JSGHCA method
adopts a step-by-step training method, firstly training the image network and text network separately, and
then uniformly training the whole network, and defines the parameter λ Used to adjust the loss function
range. The overall procedure of our proposed JSGHCA is summarized in Algorithm2.

Algorithm 2 The training process of JSGHCA method.
Input: image dataset I, text dataset T, batch size m, hash code length c, maximum training batch N, parameter values λ,µ,. . .
Output: Feature extraction function F∗ = E(∗, θ∗), ∗ ∈ {I, T}
1: for n = 1 to N do
2: Extract real-valued features and hash features from image set I and text set T.
3: Construct the domain similarity matrix SI and ST of real-valued features.
4: Use adaptive weights, SI and ST to construct joint similarity matrix S.
5: Real-valued features are transformed into hash features through the attention mechanism.
6: Construct the similarity matrix BI and BT of hash features.
7: Construct the joint similarity matrix of hash matrix.
8: Calculate the objective function, backpropagate the gradient with chain rules, and update the whole parameter;
9: end for

10: return F∗ = E(∗, θ∗), ∗ ∈ {I, T}.

4 Experiments

4.1 Datasets

MIRFlickr (Huiskes and Lew, 2008) originates from the Flickr website, and the original MIRFLICKR
25K dataset comprises 25,000 image-text pairs, each belonging to multiple categories. In the experiment,
only samples with text modalities of at least 20 words are used, resulting in a total of 20,015 image-text
pairs, each belonging to 24 categories. The text is encoded into a 1386-dimensional Bag-of-Words
(BOW) feature vector. The NUS-WIDE (Chua et al., 2009) dataset contains 269,648 network images,
each accompanied by user-provided auxiliary tags, with each image labeled with one or more categories
out of 81. Following the experimental setup in SSAH (Jin et al., 2020), image-text pairs without labels or
auxiliary markers were removed, resulting in the selection of 190,421 pairs corresponding to 21 common
categories. From this, 2,100 samples were randomly chosen as the query set, with the remaining 188,321
samples used as the database, and a further 10,500 samples randomly selected from the database for the
training set.

Dataset Training set Database Search set Class Image Text
MIRFLICKR-25K 10000 18015 2000 24 4096-D 1368-D

NUS-WIDE 10500 188321 2100 81 4096-D 1000-D

Table 1: Statistics of the experimental dataset (”D” represents the feature dimension of the modality)
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4.2 Evaluation Metrics

The most commonly used precision and recall rates are used as evaluation indicators in the experiment,
and the corresponding top-K-precision curve can be obtained by using the obtained Precision and recall
rates (abscissa: Top-k; Ordinate: precision).

The average precision AP value is the area under the precision-recall curve obtained by integrating,
and the mAP value is the average AP value of all categories, calculated as follows:

AP (i) =

∫ 1

0

p(r)dr (10)

mAP =

∑M
i=1 AP (i)

M
(11)

Where i refers to the class sequence number and M refers to the total number of classes.

4.3 Comparative experiment

Experimental Details:JSGHCA employs stochastic gradient descent optimizer with a momentum of
0.9 and weight decay of 0.0005. Evaluation during testing phase is conducted by calculating mAP
values and Top-k-Precision curves. The overall evaluation criterion encompasses the mAP for image
retrieval with text query and the mAP for text retrieval with image query. Parameter configuration should
comprehensively consider the final experimental performance and training efficiency. After training the
dataset for 10 epochs, the model demonstrates optimal training efficiency and retrieval performance.
Learning rates are set to 0.001 for ImgNet and 0.01 for TxtNet, with a batch size of 32 chosen to balance
performance and training efficiency. Hyperparameters are cross-validated, with η = 0.4 and µ=1.5
selected. For the NUS-WIDE dataset, β = 0.6 and λ1 = λ2 = 0.1. For the MIRFlickr dataset, β = 0.9
and λ1 = λ2 = 0.1.

Retrieval performance:To verify the effectiveness of the JSGHCA method, it was compared with
state-of-the-art cross-modal hash retrieval methods, including AAH (Fang et al., 2021), HSIDHN (Chen
et al., 2021), HNH (Zhang et al., 2021), DSPH (Yun et al., 2022), FDDH (Xin et al., 2021), SDDH (Qin
et al., 2021), NSDH (Yang et al., 2021), MLSPH (Zhang et al., 2021), MSDH (Zhu et al., 2021),
MSLF2 (Song et al., 2021), QDCMH (Liu et al., 2021) and IRGR (Li et al., 2023). The results show
that JSGHCA performs well on both the MIRFlickr and NUS-WIDE datasets. Although it may not
achieve the best results in single searches, combining the mAP values of both search methods, JSGHCA
and HNH perform the best. Compared to other advanced methods, JSGHCA demonstrates competitive
performance on large datasets, indicating its effectiveness and robustness.

Method I2T T2I
16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

AAH 0.7145 0.7230 0.7271 0.7283 0.8137 0.8198 0.8251 0.8281
DSPH 0.6473 0.6610 0.6703 - 0.6581 0.6781 0.6818 -
FDDH - 0.7392 0.7578 0.7631 - 0.8022 0.8250 0.8357
HNH - 0.8830 0.8950 0.9020 - 0.8540 0.8680 0.8780

HSIDHN 0.7978 0.8097 0.8179 - 0.7802 0.7946 0.8115 -
HSIDHN 0.7978 0.8097 0.8179 - 0.7802 0.7946 0.8115 -
MLSPH 0.8076 0.8235 0.8337 - 0.7852 0.8041 0.8146 -
MSDH 0.7836 0.7905 0.8017 - 0.7573 0.7635 0.7813 0.7959
MSLF2 0.6988 0.7175 0.7222 0.7294 0.7572 0.7763 0.7892 0.8229
NSDH 0.7363 0.7561 0.7656 0.7712 0.7836 0.8014 0.8183 -

QDCMH 0.7635 0.7688 0.7713 - 0.7762 0.7725 0.7859 0.8328
IRGR 0.8310 0.8550 0.8770 0.8940 0.8250 0.8770 0.8820 0.8920

JSGHCA 0.830 0.8897 0.9016 0.9012 0.8401 0.8832 0.9053 0.9102

Table 2: Performance comparison of various methods on MIRFlickr dataset

It should be pointed out that IRGR method ,HNH method and JSGHCA method adopt the method of
constructing similarity matrix for two modalities respectively, and further process the similarity matrix
on this basis, but the processing methods of the similarity matrix are different between the two methods.
The experimental results also show that IRGR method, HNH method and JSGHCA method have the best
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Method I2T T2I
16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

AAH 0.6409 0.6439 0.6515 0.6549 0.7379 0.7533 0.7595 0.7629
FDDH - 0.6970 0.6910 0.7118 - 0.8133 0.8111 0.8244
HNH - 0.8020 0.8160 0.8470 - 0.7760 0.7960 0.8020

HSIDHN 0.6498 0.6787 0.6834 - 0.6396 0.6529 0.6792 -
MLSPH 0.6405 0.6604 0.6734 - 0.6433 0.6633 0.6724 -
MSDH 0.6633 0.6859 0.7155 - 0.6359 0.6632 0.6934 -
MSLF2 0.6213 0.6339 0.6374 0.6482 0.7212 0.7427 0.7578 0.7765
NSDH 0.6418 0.6604 0.6732 0.6791 0.7658 0.7892 0.7939 0.8011
SDDH 0.6510 0.6564 0.6670 0.6733 0.7638 0.7790 0.7945 0.7990
IRGR 0.7560 0.7930 0.8160 0.8390 0.7500 0.7830 0.8040 0.8170

JSGHCA 0.7700 0.8203 0.8278 0.8602 0.7903 0.8357 0.8451 0.8500

Table 3: Performance comparison of various methods on NUSWIDE dataset

performance among all comparison methods, which indicates that the construction of similarity matrix
is conducive to the improvement of performance, and also indicates that the fine-grained processing of
similarity matrix by JSGHCA method is logically reasonable and significantly improves the experimental
performance.

Figure 4: Top-k-Precision curves on the MIRFlickr and NUS-WIDE dataset (64 bits and 128bits)
To further compare the JSGHCA method with other cross-modal hash retrieval methods, we use a

Top-k-Precision curve test. Here we compare the results of 64-bit and 128-bit hash lengths on MIRFlickr
and NUS-WIDE datasets by several mainstream methods, as shown in Figure 4. As can be seen from
the curve in the figure, although the accuracy of JSGHCA method on the same breakpoint may not be
the highest on MIRFlickr dataset and NUS-WIDE dataset, it has relatively high performance and great
advantages among similar methods, and is generally competitive.

4.4 Ablation Experiments
To demonstrate the effect of various innovations of the JSGHCA method, ablation experiments were
performed on the data set. The ablation experiments of each module were conducted on the basis of
JSGHCA, and their configurations were shown in Table 4. The JSGHCA-1 and JSGHCA-2 methods
seperately used image similarity matrix and text similarity matrix to replace the joint semantic affinity
matrix. The JSGHCA-3, JSGHCA-4, JSGHCA-5 and JSGHCA-6 methods do not use adaptive weight
mixing strategy, Si-Attention Mechanism, Jo-Attention Mechanism and Collaborative Attention Mech-
anism, respectively.DJSRH is a benchmark model without adaptive weight strategy and collaborative
attention Mechanism.
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modal setting
JSGHCA-1 || SI − cos(BI , BT ) ||2F
JSGHCA-2 || ST − cos(BI , BT ) ||2F
JSGHCA-3 No-AWM
JSGHCA-4 No-Lo-Attention Mechanism
JSGHCA-5 No-Co-Attention Mechanism
JSGHCA-6 No Mechanism

Table 4: Configuration of JSGHCA ablation experiments

Table 5-6 shows the experimental results of the ablation experiment. It can be seen from the data in the
table that the JSGHCA-1 and JSGHCA-2 methods neglect the interaction and association between differ-
ent modalities, focusing solely on the feature similarity within a single modality. Consequently, they may
not perform well in multimodal retrieval tasks. JSGHCA-3 does not dynamically adjust weights based
on the importance of different modalities, which may result in the inadequate utilization of information
from various modalities.JSGHCA-4 and JSGHCA-5 methods neglect the importance of capturing crucial
associations within a single modality (for JSGHCA-4) and across different modalities (for JSGHCA-5).
Meanwhile, JSGHCA-6 ignores associations both within a single modality and across modalities as a
whole, thus impeding its ability to fully comprehend multimodal data and generate accurate hash fea-
tures.

Method I2T T2I
16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

DJSRH 0.810 0.843 0.862 0.876 0.786 0.822 0.835 0.847
JSGHCA-1 0.6670 0.7082 0.7323 0.7745 0.6542 0.6835 0.7344 0.7632
JSGHCA-2 0.6634 0.6966 0.7222 0.7422 0.5573 0.5623 0.6438 0.6532
JSGHCA-3 0.8122 0.8623 0.8755 0.8802 0.8113 0.8582 0.8644 0.8723
JSGHCA-4 0.8186 0.8732 0.8911 0.8887 0.8096 0.8654 0.8873 0.8912
JSGHCA-5 0.8108 0.8555 0.8700 0.8864 0.8092 0.8487 0.8673 0.8774
JSGHCA-6 0.7902 0.8538 0.8792 0.8805 0.7756 0.8324 0.8606 0.8762
JSGHCA 0.8300 0.8897 0.9016 0.9012 0.8401 0.8832 0.9053 0.9102

Table 5: Comparison results on the MIRFlickr dataset

Method I2T T2I
16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

DJSRH 0.724 0.773 0.798 0.817 0.712 0.744 0.771 0.789
DJSRHS=SI - - 0.717 0.741 - - 0.712 0.735
DJSRHS=ST - - 0.702 0.734 - - 0.606 0.581
JSGHCA-1 0.6753 0.6952 0.7265 0.7803 0.7098 0.7320 0.7696 0.7754
JSGHCA-2 0.6792 0.6866 0.7024 0.7865 0.7521 0.7542 0.7853 0.8042
JSGHCA-3 0.7423 0.7855 0.8025 0.8244 0.7652 0.7843 0.8413 0.8424
JSGHCA-4 0.7322 0.7753 0.7902 0.8265 0.7756 0.8324 0.8366 0.8382
JSGHCA-5 0.7532 0.7462 0.8321 0.8902 0.7653 0.8242 0.8234 0.8253
JSGHCA-6 0.7676 0.8032 0.8153 0.8439 0.7522 0.7900 0.8102 0.8199
JSGHCA 0.7700 0.8203 0.8278 0.8602 0.7903 0.8357 0.8451 0.8500

Table 6: Comparison results on the NUSWIDE dataset

To sum up , the shortcomings of these ablation experiments suggest that various innovations in JS-
GHCA are critical to improving the performance and accuracy of multimodal retrieval tasks. By con-
sidering the interaction and association of different modalities, using adaptive weight mixing strategies,
and introducing Si-Attention, Jo-Attention, and collaborative-attention mechanisms, JSGHCA is able to
better understand multimodal data and generate accurate hash features, thus achieving excellent perfor-
mance in multimodal retrieval tasks.

5 Conclusion

In this paper, we introduced an improved deep joint semantics reconstructing hashing algorithm called
JSGHCA. This algorithm combines adaptive weight strategies and attention mechanisms to enhance the
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accuracy and descriptiveness of hash encodings for image and text modalities. Experimental results
demonstrate that JSGHCA outperforms existing algorithms in multi-modal retrieval tasks, particularly
with the incorporation of attention mechanisms and adaptive weight strategies. Additionally, we believe
there is further room for exploration, such as integrating more advanced pre-trained models or optimizing
attention mechanisms. We look forward to seeing the application of JSGHCA in other tasks, such as
image and text generation, multi-modal translation, and beyond. JSGHCA opens up new possibilities in
multi-modal retrieval and sets a new benchmark for future research.
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