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Abstract

Large language models (LLMs) struggle with event detection (ED) due to the structured and vari-
able number of events in the output. Existing supervised approaches rely on a large amount of
manually annotated corpora, facing challenges in practice when event types are diverse and the
annotated data is scarce. We propose Generate-then-Revise (GtR), a framework that leverages
LLMs in the opposite direction to address these challenges in ED. GtR utilizes an LLM to gen-
erate high-quality training data in three stages, including a novel data revision step to minimize
noise in the synthetic data. The generated data is then used to train a smaller model for evalua-
tion. Our approach demonstrates significant improvements on the low-resource ED. We further
analyze the generated data, highlighting the potential of synthetic data generation for enhancing
ED performance.

1 Introduction

Event detection (ED) aims to extract structured information from natural language text. Previous re-
searches typically involve supervised fine-tuning on a large amount of manually annotated corpora, fac-
ing challenges in practice due to the vast number of event types in real-world scenarios and the high
cost of manually annotating data. Recently, large language models (LLMs) like ChatGPT and Llama2
have made remarkable progress in many tasks in low-resource scenarios, enabling some tasks to achieve
performance comparable to fully supervised learning in zero-shot or few-shot conditions. However, the
success of large models in natural language understanding and reasoning tasks is difficult to directly
replicate in ED (Ma et al., 2023b; Qin et al., 2023; Han et al., 2023; Li et al., 2023).

Current research indicates that directly using prompt instructions to instruct models to perform ED
generally results in poor performance (Huang et al., 2024). As shown in Figure 1, researchers evaluate
the average performance of several LLMs on ED in a test set containing 250 documents. Among them,
Mixtral-8x7B-Instruct-v0.1 achieves the best trigger identification (TI) F1 score of 37.5 in a 64-shot
setting, while for trigger classification (TC), the performance of various models is even worse, and there
is no linear increase in performance with the increase in samples.The failure of LLMs in ED is related to
the characteristics of the task itself. ED requires generating a structured list of events of varying lengths.
Although these models are not adept at structured output tasks, recent research has found that models can
generate meaningful inputs based on outputs in the opposite direction (Josifoski et al., 2023), effectively
transforming the original computation from P(yk|x) to P(x|yk).

This suggests that we can leverage the asymmetry to synthesize high-quality data for ED. Data genera-
tion avoids the difficulties of outputting structured content while reducing reliance on manually annotated
data. However applying LLMs to data generation on ED is non-trivial. Unlike classification tasks like
sentiment analysis (which use sentence-level labels like positive or negative) (Ye et al., 2022a; Ye et al.,
2022b), ED requires generating data with token-level labels (Gao et al., 2022), i.e, each sentence should
contain both the correct triggers and event types. Simply prompting LLMs can lead to noisy data, as
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Model TI TC
Mixtral-8x7B-Instruct-v0.1 (2-shot) 30.4 10.2
Mixtral-8x7B-Instruct-v0.1 (6-shot) 34.4 10.6
Mixtral-8x7B-Instruct-v0.1 (16-shot) 35.4 12.1
Mixtral-8x7B-Instruct-v0.1 (32-shot) 36.7 13.8
Mixtral-8x7B-Instruct-v0.1 (64-shot) 37.5 14.6
gpt-3.5-turbo-1106 (2-shot) 33.9 11.8
gpt-3.5-turbo-1106 (16-shot) 35.2 12.3
Llama-2-70b-chat-hf (2-shot) 30.6 11.3
Llama-2-70b-chat-hf (6-shot) 32.2 12.4

Figure 1: Table of the performance of LLms on ED and Illustrations of ED with LLMs. Compared to
prompting, GtR generate synthetic data with LLMs for training. However, data generation may encounter
several issues in ED. In (b), the red word represents an incorrect event, blue word suggets competing
events (a same trigger for Attack and Injure event), and the green word represents an accompanying
event Death. GtR proposes a revision step to address these problems.

shown in Figure 1, including accompanying events, competing events and incorrect events. Unlabled
accompanying events emerge frequently in sythesized data and can disrupt the training process.

Existing works leveraging LLMs to generate labeled data in ED often overlook these challenges, pri-
marily relying on sophisticated prompts to produce training data. Ma’s approach (Ma et al., 2023a)
leverages LLMs for data augmentation but fails to address the noise issues discussed earlier. While
existing research offers noise mitigation techniques for classification tasks (e.g., noise-robust loss func-
tions) (Ye et al., 2022b; Gao et al., 2023), these methods are ineffective against the specific problem of
accompanying events in ED. To address this gap, we identify three key challenges to overcome when
mitigating noise in labeled data generation: (1) Aligned Generation: The LLM must generate data that
strictly adheres to the specified triggers and event types. (2) Internal Consistency: The triggers and event
types within each generated sample need to be consistent and mutually supportive. (3) Accompanying
Event Handling: We need a mechanism to identify and label accompanying events during generation.

To address these issues, we propose a sentence-level event data generation framework called GtR.
GtR synthesizes high-quality automatically annotated data in three stages, which can be used in zero-
shot scenarios without manual annotation and can also enhance existing data in few-shot settings. The
synthesized data also includes adversarial examples, which can significantly improve the robustness of
the model. In addition, considering that synthesized data inevitably contains some noise, we introduce
a dynamic weighting module to score the synthesized data, reducing the interference of noisy data and
improving the performance of models trained on synthesized data.

2 Related works

Zero-Shot Event Detection Zero-shot event detection (ED) aims to identify triggers and event types
without accessing training data (Du and Cardie, 2020; Lu et al., 2022; Hsu et al., 2022). Previous
approaches for zero-shot ED rely on external tools such as AMR and FrameNet to learn event features
from seen events, and apply them to unseen events (Huang et al., 2018; Zhang et al., 2022b). These
methods assume that seen and unseen events have similarities, which may not always hold true in real-
world scenarios.

Recently, applying LLMs to zero-shot tasks has gained popularity . Compared to fully supervised
learning, LLMs alleviate the trouble of limited data. However, when it comes to ED, the prompt-based
method still yields relatively unsatisfactory performance (Ma et al., 2023b; Qin et al., 2023; Han et al.,
2023; Li et al., 2023).

Dataset-generation-based Zero-shot Learning Some researches have explored an alternative ap-
proach leveraging the knowledge of LLMs for zero-shot learning. These methods prompt the LLMs
to generate samples for downstream tasks based on the given task descriptions and labels (Schick and
Schütze, 2021). With the generated samples, a smaller model with faster speed and lower computational
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requirements can be trained. These methods have shown significant results in classification tasks. Ye et
al. (Ye et al., 2022a) indicates that the synthetic data generated by LLMs is of high-quality in sentiment
classification and natural language inference, even surpassing the performance achieved by fine-tuning
on original data on some datasets.

Some studies recently explore data generation with LLMs in the realm of information extraction.
Josifoski (2023) generates high-quality structured data using LLMs in relation extraction. Ma (2023a)
applies data generation in event extraction but fails to address the issues of accompanying and incorrect
events. In contrast to these methods, GtR generates samples from scratch, and proposes a revision stage
to address the noise, obtaining data that can be directly used for training.

3 Data Generation Framework

In this section, we introduce how GtR generates high-quality labeled training data for ED, i.e. Ssyn =
{Xsen,Yevent}.

3.1 Event Template
We define an event template formatted as a JSON array to specify key information about events to guide
the following stages. The event template E ∼ {e1, e2..., ek}, where k is the number of events, consists
of two items for every elements.

• Description. Description is the concrete definition of an event type. For example, the Injure event
can be defined as a person experiences physical harm. Description should be precise to avoid
ambiguous results when generating triggers and sentences.

• Examples. Examples provide demonstrations and CoT rationales for generating triggers and sen-
tences, facilitating in-context learning and enhancing their overall quality. Note that we do not use
examples in zero-shot setting for fair comparison.

3.2 Trigger Expansion
With the guide of an event template, we iteratively leverage LLMs to produce triggers for every event.
Formally, given the model M and a function Ftri : E → Ptri, where Ptri denotes the prompt, we obtain
generated triggers Ttri ∼ M(Ftri(E)). Ftri retrieves event description and examples from the template,
and combines them with an instruction to form the prompt fed to LLMs. The input prompt for Injure
would be: list 10 words which mean that a person experiences physical harm.

3.3 Data Generation
Both triggers and sentences can be generated simultaneously, but in order to get better control over the
type and diversity of sentences, we split them into two stages. With the function Fsen : (E , Ttri) → Psen

, we gain positive and negative samples (Xsen,Y ′
event) ∼ M(Fsen(E , Ttri)), where Psen denotes the

prompt for generating sentences, Xsen denotes the generated sentences and Y ′
event represents the events.

For every trigger in Ttri, Fsen combines description and examples from the template with an instruction
to prompt LLMs to output sentences.

The complete prompt for positive and negative samples are nearly identical. For example, given the
trigger kill, we build the following prompt: make 5 sentences with the word kill. The sentences should
have different backgrounds. The length and structure should vary from each other. The word should
mean/not mean causing the death of a person. LLMs are capable of effectively generating sentences
that meet the requirements of the prompts.

3.4 Data Revision
Data obtained from the Data Generation step are highly likely noisy, containing incorrect events and
accompanying events, e.g., a sentence for Attack may also include the Injure or Die event. Hence,
we propose the Data Revision step to solve these problems. With Frev : (E , Ttri,Xsen,Y ′

event) →
(Xsen,Yevent), we get the final training dataset.
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Figure 2: Data Revision: we address incorrect events, accompanying events and competing events based
on the inference of LLM. As depicted in the figure, the LLM determines that event A is more appropriate
than event B within current sentence.

Incorrect and Accompanying Events Frev identifies events within generated text from Xsen using
triggers in Ttri. It first labels all words or phrases from Ttri as potential events within the sentence. Then
Frev constructs prompts leveraging a LLM to answer Yes/No questions about each potential event. For
example, consider the trigger beat associated with the Attack event and the sentence He beat the old man
to death. As shown in Figure 2, Frev labels the word death as a potential Death event and then builds
prompts for Attack and Death successively. The complete prompt is like sentence: He beat the old man
to death. Does the word beat in the sentence explicitly mean ”causing physical harm to a person”?
Events receiving a Yes answer are retained, while those receiving a No are discarded. This process helps
resolve incorrect and accompanying events within the generated text.

Competing Events We need to settle competing events in the samples. In some cases, LLMs mistak-
enly assign the same trigger in a sentence to different similar events, leading to race conditions. Given
the trigger stab, LLMs may consider it both as an Injure and Attack event. To tackle this, we request
LLM to explain the difference between these two events. Provided with the explanation as context, LLM
determines which event is more accurate within the current sentence. Finally, we modify samples based
on the answers.

After Data Revision, we gain the final synthetic data Ssyn for training.

Figure 3: Illustration of the process of weighting.

4 Dynamic Weighting

Data Revision can mitigate the aforementioned noise issues. As the scale of generated data increases,
residual noise will inevitably continue to grow, constraining further improvements in model performance.
Therefore, we also propose a dynamic weighting module g(x,θ) that assigns weight coefficients to
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samples in Ssyn.

4.1 Weighting Model
We first utilize pre-trained language models such as BERT to encode the synthesized data. Given a
sample sentence W = {w1, w2, ..., wn} of length n, we obtain its encoded feature representation Ŵ =
{ŵ1, ŵ2, ..., ŵn}. The sentence contains a list of events, with each event recording a specific trigger wi

and event type ewi . Next, we initialize learnable event type vectors E = {e1, e2, ..., ek}, where k is the
number of event types. We score the similarity between wi and ewi using g(x,θ) as follows:

g(wi) = Norm(Similarity(MLP (ŵi), ewi)) (1)

Here, the similarity is computed using cosine similarity, and the similarity scores are normalized.
g(x,θ) outputs scores ranging from 0 to 1 for each trigger in the event list, determining the likelihood of
triggering the corresponding event

4.2 Model Optimization
In this subsection, we will detail the optimization process of g(x,θ). We follow Shu (2019) to optimize
the model based on Ssyn (Support Set) and a small set of gold data Sgold (Query Set) obtained from
examples. A classification network f(x,ω) is first trained based on the Support set, where M∈RH×k+1,
k + 1 equals the total number of event types and Null event.

f(x) = SoftMax(Encoder(x)M) (2)

Next, we use the following loss function to obtain the updated parameters of the classification network
ω̂t at the time of t:

Lssyn =
1

m

m∑
i=1

Score(wi)L
i
ssyn (3)

Score(wi) =

{
1, if ∃ ewi

g(wi), if ∄ ewi

(4)

Li
ssyn = l(yissyn , f(s

i
syn,ω)) (5)

s denotes the length of all tokens in Ssyn and l denotes cross-entropy loss function. The loss coefficient
is determined based on the return value of the score function. If a token does not trigger an event, the
coefficient is defaulted to 1. If it is a trigger, the coefficient is calculated based on the weighting model.
We gain ω̂t as follows:

ω̂t = ωt − α×∇ωtLssyn (6)

At time t + 1, we optimize the weighting model on the query set using ω̂t (Step-1 in Figure 3).
Specifically, we compute the loss on the Query set, with the equations as follows:

Lsgold =
1

k

k∑
i=1

Li
sgold

(7)

Li
sgold

= l(yisgold , f(s
i
gold, ω̂

t)) (8)

k is the length of the Query set tokens. Based on this, we calculate the gradients of the parameters
of g(x,θ) and update the parameters from θt to θt+1 (Step-2 in Figure 3). Then we freeze θt+1 and
calculate the gradients of the classification network’s parameters at time t + 1 according to the loss
function in 3. And finally update ωt to ωt+1 (Step-3 in Figure 3)
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5 Event Detection Model Training

After completing the learning process of the weight model, we use g(x,θ) to calculate the weights for
generated data. During training, we merge the weighted synthetic data with the example data, adjust the
loss coefficients based on the weights.

6 Experiments

Datasets We perform experiments on three different ED datasets including ACE05 (Walker et al.,
2006), MAVEN (Wang et al., 2020) and Commodities News (Lee et al., 2021), which contain 33, 168
and 18 event types respectively. We refer to previous works to partition the test set from ACE05 (Du
and Cardie, 2020) and Commodities News (Lee et al., 2021) for evaluating. For MAVEN, we use the
officially provided validation set for testing.

Baselines We train a model without weighting on synthetic data and compare it with these baselines in
zero-shot setting: UIE(Lu et al., 2022), ZEOP(Zhang et al., 2022b) ZED(Zhang et al., 2022a) , gpt-3.5-
turbo and GtR prompt. Compared with GtR, GtR prompt omits the Data Generation stage and treats the
targeted test set as unlabeled generated data (Generated triggers are used in this stage). Then GtR prompt
regards the labeled data obtained through the Data Revision stage as final results.

We train a model with weighting and compare the model with these baselines in few-shot setting: UIE
(Lu et al., 2022), STAR(Ma et al., 2023a), gpt-3.5-turbo.

Evaluation Strategy We adopt the same evaluation metrics as previous works on ED. For trigger
identification (TI), a predicted trigger is considered correct only if it matches the gold trigger exactly.
For classification (TC), both triggers and types should be the same with the gold labels. We use F1 score
as the evaluation metrice.

Implementation Details We use OpenAI’s gpt-3.5-turbo for datasets generation. When constructing
event templates, we refer to the official guideline for ACE05, and write event descriptions for other
datasets on our own. For fair comparison, we do not use any examples but rely solely on the basic
prompt in zero-shot setting. We generate 821 triggers and 6,387 sentences for ACE05, 1,647 triggers
and 16,876 sentences for MAVEN, 447 triggers and 6,877 sentences for Commodities News.

We employ the pre-trained model Bert-base-uncased from the Hugging-face community0 and use the
model architecture from Du (2020) for training. We use the Adam optimizer with a learning rate of 4e−5

and set other hyper-parameters as Du (2020). All models are optimized on a single NVIDIA V100 GPU.

Model
ACE05 MAVEN Commodities News

TI TC TI TC TI TC
UIE - 38.14 - 24.17 - 35.64

ZEOP - 45.91 - - - -
ZED - - 49.39 32.96 - -

gpt-3.5-turbo 24.63 18.75 25.76 20.32 23.40 19.76
GtR prompt 43.92 41.93 30.12 28.54 56.23 34.12

STAR 43.74 38.90 - - - -
GtR 55.29 50.49 44.60 36.48 68.79 45.03

Table 1: The zero-shot performance evaluated on three datasets. We adopt the results of UIE on ACE05
from the original paper, and conduct experiments on the other two datasets. For prompting, we employ
the same model, gpt-turbo-3.5, perform three rounds of experiments and use the same set of generated
triggers. Regarding GtR, we report the average results of three experiments conducted with different
random seeds on the same generated data.

0https://huggingface.co/bert-base-uncased
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6.1 Main Results on Zero-Shot ED
We experimentally evaluate the generative performance of GtR in a zero-shot scenario, where no exam-
ples are used, allowing for a direct validation of the framework’s generative capabilities. From the table
1, we can draw the following conclusion:

1. The model trained on synthetic data consistently outperforms LLMs and demonstrates a more stable
performance. We argue that GtR, through its three-stage generation process and iterative refinement,
transforms the challenging task of extracting complex structured events into a series of simpler and more
answerable questions, which allows for better and more consistent performance.

2. GtR prompt performs better than directly prompting, but still falls short of the model trained on
GtR. This performance gap may arise from two reasons. Firstly, GtR includes adversarial samples, which
can provide additional information and reduce the risk of the model being overly confident. We validate
the effectiveness of adversarial samples in subsequent experiments. Secondly, the sentences encoded by
the pretrained models contain certain features, such as part-of-speech features, which can enhance ED
performance.

3. GtR outperforms UIE, indicating that the advantages gained by UIE through multitask pretraining
do not surpass those achieved by synthesizing data using GtR. Additionally, other methods for zero-shot
ed using external knowledge and contrastive learning have not shown significant superiority over GtR.

Model
TI TC

5-shot 10-shot 5-shot 10-shot
UIE - - 51.21 53.23

gpt-3.5-turbo 34.22 34.64 11.17 12.54
STAR 61.39 63.57 56.41 59.10
GtR 63.47 65.78 58.82 61.21

w/o weighting 61.56 64.21 56.74 58.43

Table 2: Experiment results on few-shot ED

6.2 Main Results on Few-Shot ED
We also conduct experiments in the low-resource scenario of the ACE05 dataset, specifically in 5-shot
and 10-shot settings.

1. From table 2, we find that even with an increase in examples, directly prompting LLMs did not
result in linear growth in benefits. Performance on both TI and TC are comparatively poor, far behind
supervised methods. Finding better prompting methods to improve the performance of LLMs in ED
remains a topic worthy of attention.

2. GtR outperforms STAR, validating the superiority of our framework and the necessity of revising
data. Compared to STAR, our proposed framework has a higher ceiling. It is noteworthy that both
GtR and STAR outperform UIE, once again confirming that data synthesis can quickly improve the
performance of ED.

3. Dynamic weighting improves the quality of synthetic data and leads to better performance. This
indicates that synthetic data itself contains some noise, which becomes more constraining to the model
as the scale increases. It also underscores the necessity of dynamically weighting synthetic data.

6.3 Ablations
Compared to other generation methods, GtR primarily introduces the Data Revision step for synthetic
data. To explore the improvement in data quality through Data Revision, we conduct ablation studies
on the generated datasets. As shown in Table 3, we first perform a base experiment on the basic dataset
obtained during Data Generation. The column Events shows the number of events in each dataset.
+Rev old denotes the updated dataset in which only existing labels are revised, +Rev new denotes the
dataset based on +Rev old in which accompanying events are further identified , and +Rev com is the
dataset based on +Rev new where competing events are resolved.
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Events P R F1
Basic data 3,980 32.47 24.69 28.05
+Rev old -626 36.95 22.72 28.13
+Rev new +1,828 52.08 46.42 49.09
+Rev com -77 58.88 44.20 50.49

Table 3: Experiments conducted on different data generated during the revision phase, where the column
Events indicates the number of events in the current dataset. Every dataset is generated based on the
previous dataset.

From Table 3, we observe that model trained on the basic data performs averagely. Basic dataset is
filled with noise, which hampers the model’s performance. In +Rev old, the number of events decreases,
while the F1 score remains comparable to before with an improvement in precision and decrease in recall.
In +Rev new, the number of events increases around by 50%, and the model’s performance significantly
improves 74%, approaching optimal results. 77 competing events are eliminated in +Rev com, leading
to a increase in precision, and yet a slightly drop in recall.

In general, the key to improving the model performance lies in the extra events identified in the Data
Revision stage.

6.4 Analysis on Adversarial Samples

Setting Models F1 Rerror ↓

zero-shot
GtR 50.49 7

w/o Adv 48.68 53
UIE-base 38.14 63.5

fully supervised Bert-ED 70.17 10.5

Table 4: The error rates of different models on adversarial test data, where w/o ADV indicates the model
trained without adversarial samples and Bert-ED is trained on all gold samples.

We generate adversarial samples for each trigger in Data Generation. Previous studies have shown
that incorporating adversarial samples during training can improve the robustness of models. To evaluate
the effectiveness, we conduct experiments on a brand-new test set for ACE05. The detailed process for
data construction is as follows:

We first select the common triggers between the gold training dataset and Dmt to ensure a fair compar-
ison. Then, with these triggers, we create 200 adversarial samples as test set. Each sample is manually
inspected to ensure that neither does it contain any events nor appear in Dmt. We use the error rate Rerror

as the evaluation metric, which is the proportion of incorrectly predicted samples out of all the samples.
Table 4 presents the experiments performance of different models on this test set. We find that re-

moving the adversarial samples slightly compromises the overall performance of GtR (a 2% drop) and
significantly reduces its robustness. UIE, which is not deliberately trained with adversarial samples, also
exhibits high error rates. GtR trained with adversarial samples (7% Rerror), and Bert-ED trained on
the full training set with supervision (10.5% Rerror) demonstrate much lower error rates. This finding
validates the practical utility of generating adversarial data to enhance the model robustness.

6.5 Analysis on Weighting Model

This section analyzes the practical effects of the dynamic weighting. To do this, we first conduct a
statistical analysis of the scores for each event in the ACE05 synthetic data. The horizontal axis of the
graph represents the score range from 0.35 to 0.5, while the vertical axis represents the number of events
corresponding to each range in the ACE05 synthetic dataset.
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Figure 4: Illustration of the weights of events.

From the figure 4, it can be observed that the majority of synthetic data scores are concentrated in the
range of 0.44 to 0.5, with some in the range of 0.35 to 0.38, and the remaining data dispersed in other
score ranges. Under the 10-shot scenario, the distribution of synthetic data tends to skew slightly to the
right compared to the 5-shot scenario.

Figure 5: Illustration of the performance of models in different setting.

In Figure 5, we present a comparison of performance with and without the weighting module as the
scale of synthetic data increases in both the 5-shot and 10-shot scenarios. The horizontal axis represents
the number of synthetic data added for each event type, while the vertical axis represents the F1 score
on TC. 5-shot-weight and 10-shot-weight denote the performance of models without incorporating the
weighting model.

Figure 5 demonstrates that in both the 5-shot and 10-shot scenarios, models trained on dynamically
weighted synthetic data outperform those trained directly on synthetic data. Under the 5-shot condition,
as the data scale increases, the performance of the regular model reaches a peak, showing significant
fluctuations and even slight declines. However, models trained with dynamic weighting still maintain a
growth trend.

These results confirms the importance of the dynamic weighting module in improving data quality and
the potential value it brings in enhancing model performance and stability.
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Self-Bleu Accuracy
Gold 0.18 -
GtR 0.17 88.3

Table 5: Diversity and accuracy metrics of synthetic data

6.6 Analysis on Synthetic Data

The ablation experiment validates the role of synthetic data obtained during the data generation stage.
Here, we further analyze the diversity and reliability of the synthetic data. The evaluation metric for
diversity is the Self-Bleu score. We calculated the Self-Bleu scores for ACE05 gold training data and
synthetic data on a randomly selected set of 300 samples. Self-Bleu values can to some extent reflect the
diversity of data. It can be observed that the diversity of synthetic data is comparable to that of real data.

We manually check the accuracy of 200 adversarial data samples. Table 5 shows that the accuracy of
adversarial data is relatively high, indicating that the model is proficient in synthesizing adversarial data.

6.7 Case Study

Event Types Triggers Data Types Sentences

Attack bashed normal
The reckless driver bashed into the cyclist, injuring him badly and
causing damage to his bike.

Attack seize adversarial
The company decided to seize the opportunity to expand business
when a rival company had to shut down due to bankruptcy

Be-Born deliver normal
The pregnant woman was rushed to the emergency room as she went
into labor and had to deliver her premature baby.

Be-Born born adversarial
The idea for the new product was born during a brainstorming
session with the marketing team.

Table 6: Generated data cases on ACE05. The bold font indicates the correct events within basic data,
the green words represent the newly recognized events and the red word suggest an incorrect event.

The section presents some successful and failed cases in the synthetic data, along with the results
of the weight model. As shown in Table 6 if the event type is specific and easily distinguishable from
other event types, GtR tends to synthesize successful and high-quality data, as exemplified by the high
correctness of the synthetic data for the Be-Born event shown in the table. However, even after data
revision, synthetic data may still contain incorrectly recognized events, such as the event in the first case
where the victim of Attack should be a person.

Addressing the effectiveness of data synthesis on abstract event types and proposing better revision or
filtering algorithms are topics worthy of future research. We leave the work for future research.

7 Conclusion

ED has long faced challenges of data scarcity and the time-consuming nature of manual annotation. The
development of LLMs brings a ray of hope to address these issues. In this paper, we proposes GtR,
the data synthesis framework, which includes three stages: trigger expansion, data generation, and data
revision, along with a dynamic weighting module for synthetic data. In the experimental section, we test
the generative performance of GtR in zero-shot and low-shot scenarios. Compared to direct prompting
and other generation methods, our framework exhibits significant advantages, with the dynamic weight-
ing mechanism improving the model’s performance ceiling. We hope that the research in this paper can
inspire future work in the field of data synthesis.
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