基于逻辑推理和多任务融合的认知刺激对话生成方法(Cognitive stimulation dialogue generation method based on logical reasoning and multi-task integration)

Jiang Yuru (蒋玉茹), Li Mengyuan (李梦媛), Tao Yuyang (陶宇阳), Qu Keming (区可明), She Zepeng (佘泽鹏), Shi Shuicai (施水才)


Abstract
“在全球老龄化背景下,带有认知刺激的对话系统是保持老年人认知健康的重要手段。中文认知刺激对话数据集(Chinese Cognitive Stimulation Conversation Dataset,CSConv)和模型构建的研究工作刚刚开始。本文将认知刺激对话生成视为一个多任务融合的逻辑思维推理过程,将情感分类任务、决策任务和对话回复生成任务间的逻辑关系,建模为一个推理过程,来引导大语言模型生成。针对决策任务,本文提出分层编码器结构的决策模型。决策实验结果表明,决策模型有效的提高了决策任务的准确率。针对多任务过程,本文提出多任务融合方法,将三个任务对应的模型结合在一起。生成实验结果表明,分类、决策及生成的多任务融合方法,显著提升了对话回复能力,证明了该方法的有效性和先进性。”
Anthology ID:
2024.ccl-1.8
Volume:
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
Month:
July
Year:
2024
Address:
Taiyuan, China
Editors:
Maosong Sun, Jiye Liang, Xianpei Han, Zhiyuan Liu, Yulan He
Venue:
CCL
SIG:
Publisher:
Chinese Information Processing Society of China
Note:
Pages:
98–109
Language:
Chinese
URL:
https://aclanthology.org/2024.ccl-1.8/
DOI:
Bibkey:
Cite (ACL):
Jiang Yuru, Li Mengyuan, Tao Yuyang, Qu Keming, She Zepeng, and Shi Shuicai. 2024. 基于逻辑推理和多任务融合的认知刺激对话生成方法(Cognitive stimulation dialogue generation method based on logical reasoning and multi-task integration). In Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference), pages 98–109, Taiyuan, China. Chinese Information Processing Society of China.
Cite (Informal):
基于逻辑推理和多任务融合的认知刺激对话生成方法(Cognitive stimulation dialogue generation method based on logical reasoning and multi-task integration) (Yuru et al., CCL 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.ccl-1.8.pdf