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Abstract

Pre-trained language representation-based dependency parsing models have achieved obvious
improvements in rich-resource languages. However, these model performances depend on the
quality and scale of training data significantly. Compared with Chinese and English, the scale of
Vietnamese Dependency treebank is scarcity. Considering human annotation is labor-intensive
and time-consuming, we propose a multi-features enhanced multi-task learning framework to
convert all heterogeneous Vietnamese Treebanks to a unified one. On the one hand, we exploit
Tree BiLSTM and pattern embedding to extract global and local dependency tree features from
the source Treebank. On the other hand, we propose to integrate these features into a multi-task
learning framework to use the source dependency parsing to assist the conversion processing.
Experiments on the benchmark datasets show that our proposed model can effectively convert
heterogeneous treebanks, thus further improving the Vietnamese dependency parsing accuracy by
about 7.12 points in LAS.

1 Introduction

Dependency parsing, as a fundamental task of natural language processing, aims at capturing syntactic
and semantic information between two words through a dependency tree. The top of Figure 1 shows a
dependency tree from the universal dependency treebank, where the directed edge from the headword
“mừng (happy)” to the modified word “mà (and)” is a dependency arc, the label “mark” on the arc
indicates the type of dependency relation between two words. Recently, dependency parsing has gained
more attention due to its simple and understandable structure. The results of dependency parsing have
been applied to various artificial intelligence tasks, such as grammatical error correction (Li et al., 2022),
machine translation (Pu and Sima’an, 2022), and semantic role labeling (Zhang et al., 2022).

$ Dân mừng mà bộ đội cũng mừng
$ People happy and soldiers also happy

root
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Figure 1: Example of treebank conversion from the target-side UD tree (upper) to the source-side VnDT
tree (under).
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With the development of neural networks and pre-trained language technologies, dependency pars-
ing models have achieved significant progress in rich-resource languages. Currently, the supervised
dependency parsing model has obtained 96.4 LAS and 97.4 UAS on English Penn Treebank (Amini
et al., 2023), and 92.5 LAS and 93.5 UAS on Chinese Penn Treebank (Yang and Tu, 2022). However,
all these supervised parsing models are highly dependent on the quality and scale of training data. For
low-resource languages like Vietnamese, the performance and efficiency of the parsing model are not
ideal because of the scarcity of Vietnamese annotation corpora. To address this issue, we first survey the
existing Vietnamese dependency treebanks, which include Universal Dependencies (UD)0, Vietnamese
Dependency Treebank (VnDT) (Nguyen et al., 2014a), and Vietnamese Language and Speech Processing
(VLSP2020)1. However, since these treebanks adopt different annotation standards, it is impossible to
fuse all treebanks directly for traditional paring model training due to the potential semantic conflicts.
As shown in Figure 1, the upper tree is generated based on the UD standard, while the bottom tree is
from VnDT. We can see that even though the two dependency trees have the same input sentence, the tree
structures still have some differences in arcs and labels. This study terms such treebanks with different
standards or linguistic theories as heterogeneous treebanks. Hence, how to convert the heterogeneous
treebanks to a unified one is the main challenge to improving the performance of Vietnamese dependency
parsing. The key to addressing this problem is to model the mappings between different treebanks. In the
past few years, some researchers have attempted to perform conversion between heterogeneous treebanks
through rule-based methods (Stymne et al., 2018; Borges Völker et al., 2019; Arnardóttir et al., 2020).
However, most of these conversions focus on bi-tree alignment, ignoring the information in the source
dependency tree. Hence, we propose a multi-features enhanced multi-task learning method to convert other
treebanks into the UD standard. Concretely, we first use the pre-trained language model XLM-RoBARTa
to enhance the basic dependency parsing performance. Then, we exploit pattern embedding and Tree
BiLSTM to extract the local and global features from the source treebank. Next, both features are fused
into a multi-task learning framework to further enhance the capability of conversion. Finally, all converted
trees are combined with the original UD for the XLM-RoBARTa-enhanced basic model training.

Experimental results demonstrate that our proposed model can effectively model the mapping between
heterogeneous treebanks, and the converted treebank is extremely useful for improving the accuracy of
Vietnamese dependency parsing. Detailed analysis shows that both pattern embedding and Tree BiLSTM
are helpful in encoding the information of the source tree, thus improving the conversion performance.
The comparison experiments indicate that the converted treebank is an important factor in boosting the
Vietnamese dependency parsing.

2 Related work

2.1 Dependency Parsing

In the field of dependency parsing, the prevailing methods are graph-based and transition-based depen-
dency parsing. Graph-based dependency parsing has achieved state-of-the-art performance in various
languages. With the development of neural networks and pre-trained language models, an increasing num-
ber of researchers and developers are applying these technologies to dependency parsing models. These
models have a strong capability to understand complex linguistic structures, achieving significant progress
in dependency parsing tasks. Dozat and Manning (2017) proposed a biaffine parser model, which uses a
BiLSTM for encoder layer. Li et al. (2018) proposed the first end-to-end model for dependency parsing.
Kondratyuk and Straka (2019) developed a multilingual multi-task self-attention network fine-tuned on
BERT, achieving competitive results in multiple languages. Li et al. (2020) employed a bi-directional
LSTM-CNN architecture for context encoding and deep contextually related word representations (ELMo
and BERT) to further enhance model performance. Sharefah et al. (2023) delved into fine-tuning the
BERT model for Arabic dependency parsing, providing insights for fine-tuning BERT models for specific
NLP tasks.

0https://universaldependencies.org/
1https://vlsp.org.vn/vlsp2020/eval/udp
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Vietnamese is part of the Austro-Asiatic language family and is one of the 20 most commonly used
languages worldwide. Vietnamese vocabulary contains a large number of Sino-Vietnamese words de-
rived from Chinese. This unique language structure and vocabulary combination makes Vietnamese an
interesting research object in the field of NLP. Especially in the field of Vietnamese dependency parsing,
significant research progress has been made in recent years. Do et al. (2022) proposed a cross-linguistic
model adaptation using English to aid Vietnamese parsing, enhancing accuracy. Thien et al. (2020) com-
bined BiLSTM and GNN. Le-Hong and Cambria (2024) integrated graph embedding with bidirectional
recurrent neural networks for better performance. Nguyen and Nguyen (2020) Nguyen and Nguyen (2020)
developed PhoBERT, a BERT-based monolingual language model for Vietnamese, showing excellence in
POS tagging, dependency parsing, named-entity recognition. Trinh et al. (2022) integrated PhoBERT
with cross-view training to enhance performance using labeled and unlabeled data.

2.2 Treebank Conversion

In the early stages of treebank conversion research, manual and rule-based methods were predominant,
especially for widely used languages. These approaches relied on linguists and researchers meticulously
developing sets of rules to convert syntactic structures and annotations from one standard to another (Frank,
2001; Avgustinova and Zhang, 2010; Candito et al., 2010). Li et al. (2013) used an annotation adaptation
algorithm to convert component dependency tree banks from one annotation guideline to another. Nguyen
et al. (2014b) designed a heuristic rule to convert Vietnamese component treebank into dependency
treebank. Tran and Miyao (2022) Relying on hand-coded rules to assign categories to constituents
convert Universal Dependencies (UD) treebanks to Combinatory Categorial Grammar (CCG) treebanks.
However, these rule-based methods faced limitations when applied to languages with fewer resources, like
Vietnamese, where treebanks are smaller and annotated data is limited, making it challenging to develop
comprehensive rule sets.

In recent years, with the advancement of machine learning technologies, learning-based methods have
emerged as a new trend in the field of treebank conversion. These methods, by learning the characteristics
of different datasets, are more effective in handling the complexities of languages and data (Truong et al.,
2022; Wang et al., 2022). The core of treebank conversion is to find the mapping relationship between the
source treebank and the target treebank. Therefore, how to effectively utilize the syntactic information of
the source treebank is the key to the problem. Jiang et al. (2018) constructed a supervised transformer
by manually annotating a certain scale of dual-tree alignment data and using pattern embedding and
TreeLSTM to encode the source-side trees. Wan et al. (2022) adopted a graph-to-graph annotation
conversion method, utilizing pseudo data and inherit parameters to guide the graph transformation,
achieving an automatic conversion from one annotation standard to another.

3 Our Proposed Approach

Treebank conversion aims to convert the source-side tree into the target-side tree. Given the word sequence
S = w1w2 . . . wn of the sentence, the part-of-speech sequence T = t1t2 . . . tn and the source-side tree
dsrc, the task of treebank conversion is to output a syntactic tree dtgt that conforms to the target-side
norms. Therefore, effectively utilizing the information from the source-side treebank to guide the treebank
conversion is key to the research. Naturally, we consider encoding the source-side treebank and using it as
an additional input to the MLP to enhance the model’s conversion capability. Specifically, we employ two
strategies, Pattern Embedding(PE) and Tree BiLSTM, to encode the source-side tree from both local and
global perspectives. Next, we will introduce the main components of the model, including the input layer,
encoder layer, and decoder layer.

3.1 Embedding

Input Layer. We adopt the BiAffine Parser proposed by Dozat and Manning (2017) as our foundational
model. As a graph-based dependency parsing model, this parser has achieved outstanding performance
across multiple languages. The input layer primarily transforms words in a sentence into dense vectors.
Compared to the original parser, we discovered that replacing label representations with character rep-
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Figure 2: Framework of our proposed model.

resentations could further enhance the model performance. Moreover, to strengthen the representation
ability of the model for Vietnamese, we introduced the pre-trained language model XLM-RoBERTa
as an additional representation and fine-tuned it using a large volume of unlabeled data to improve its
understanding and representation of Vietnamese. Consequently, the final input vector xi for the input
layer is constructed by concatenating repchari , repXLM-Ri , and embwordi .

xi = repchari ⊕ repXLM-Ri ⊕ embwordi (1)

3.2 Encoder

BiLSTM. The encoder layer uses a three-layer bidirectional LSTM (BiLSTM) network to obtain a
context-sensitive representation of each word. Multi-layer BiLSTM is capable of capturing more complex
contextual information and deeper linguistic features. BiLSTM provides a comprehensive representation
of each word by combining information from both directions of the sentence.

h0h1 . . .hn = BiLSTM(x0x1 . . .xn, θBiLSTM) (2)

Pattern Embedding. Li et al. (2012) first proposed a pattern-based treebank conversion method. This
method generates pseudo-double tree alignment data by using the syntax model trained by the source-side
treebank to parse the target-side treebank. Then, they extracted pattern-based features from the source
trees of this pseudo-double-tree alignment data and used these features as additional guidance information
to train a more accurate target-side syntax model. However, this definition of pattern features only focuses
on syntactic structure information and ignores the dependency relationship of the source tree. Based
on this, Jiang et al. (2018) further refined and expanded the pattern features and introduced more label
information. Therefore, in order to make full use of the information of the source syntax tree, we adopted
9 detailed pattern classifications based on the work of Jiang et al. (2018), as shown in Table 1.

Taking the calculation of arc i← j as an example, first determine the corresponding pattern type Pi←j

based on the positional relationship between word wi and word wj in the source tree and refer to Table
1. Then obtain the dependency label corresponding to word wi and word wj and put It is represented
as li and lj . In addition, the closest relationship between word wi and word wj is also considered the
dependency label la of the common ancestor word a. Finally, these four embedding representations are
merged to form the pattern embedding representation rpati←j .

rpati←j = ePi←j ⊕ eli ⊕ elj ⊕ ela (3)
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Target-side arc Source-side arc Pattern
i← j consistent

i← k← j grand
i← k→ j sibling

i← j i→ j reverse
i→ k→ j reverse grand

i← k→m→ j, i← k←m← j, . . . Distance of 3
. . . Distance of 4-5, 6 and ≥ 7

Table 1: Path-Pattern Correspondence Table.

Finally, the vector rpati←j is concatenated with hi and hj respectively, serving as the inputs for MLPD

and MLPH.
Tree BiLSTM. To better leverage the information from the source-side tree, we naturally thought of

using Tree BiLSTM to encode the source-side tree. Tree BiLSTM is an extension of BiLSTM that is more
adept at handling tree-structured data. Tree BiLSTM aggregates and transfers information according to
the tree structure of the input data, capturing hierarchical information by recursively processing each node
in the tree. The state of each node not only depends on its child nodes but may also rely on the states
of its parent or sibling nodes, allowing the model to capture long-distance dependencies and complex
relationships within the tree structure.

To ensure that the Tree BiLSTM can fully capture the contextual information of the sentence, we
directly utilize the output of the top-level BiLSTM as its input. Moreover, to introduce the dependency
relations of the source-side tree, we also map the dependency labels of the source-side tree to embedding
vectors as an additional input for the Tree BiLSTM. Taking the word wk as an example, rk is its top-level
BiLSTM output vector, lk is the dependency relation label of word wk in the source tree, and elk is the
embedding vector mapped from the label. Therefore, the input for the word wk in Tree BiLSTM is:

xk = rk ⊕ elk (4)

In Tree BiLSTM, the hidden state vector of each node is calculated by combining the input vector of the
node with the hidden state vectors of all its child nodes. Let xa be the input vector for node a, and C(a)

represent the set of all its child nodes. The hidden state vector hk and cell state vector ck correspond to
the hidden and cell states of its children, respectively. Thus, the Tree LSTM computation process for node
a can be described as follows:

ĥa =
∑

k∈C(a)

hk

ia = σ(W(i)xa +U(i)ĥa + b(i))

fak = σ(W(f)xa +U(f)hk + b(f))

oa = σ(W(o)xa +U(o)ĥa + b(o))

ua = tanh(W(u)xa +U(u)ĥa + b(u))

ca = ia ⊙ ua +
∑

k∈C(a)

fak ⊙ ck

ha = oa ⊙ tanh(ca)

(5)

Where W and U are the weight matrices to be learned, b is the bias term, and σ is the sigmoid activation
function.

After encoding through the Tree BiLSTM, we obtain the top-down word sequence representation h↓k
and the bottom-up word sequence representation h↑k of the source-side tree. We then concatenate these
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representations, and the output of the Tree BiLSTM is rtreek = h↓k ⊕ h↑k. Finally, rtreek is used as an
additional input for the MLP layer.

3.3 Decoder
MLP layer. The MLP layer contains two independent multilayer perceptrons (MLP), one for predicting
head words in dependencies and the other for predicting dependant words. This layer further merges the
output of BiLSTM with the output of PE and Tree BiLSTM and converts it into features for predicting
dependencies.

rD
i =MLPD

(
hi ⊕ rpati←j ⊕ rtreei

)
rH
j =MLPH

(
hj ⊕ rpati←j ⊕ rtreej

) (6)

BiAffine layer. The BiAffine layer is responsible for calculating the dependency scores between words,
where the score represents the dependency arc score from the head word Wj to the dependent word wi.

score(i← j) =

[
rD
i

1

]T
U1rH

j (7)

where the dependency arc from Wj to wi is determined by the weight matrix U1.
Parsing loss. Assuming that the correct core word of word Wi is Wj and the dependency relation label

is l, the loss function of the model is defined as follows:

Lpar =− log
escore(i←j)∑

0≤k≤n,k ̸=i

escore(i←k)

− log
escore(i

l←−j)∑
l′∈L e

score(i
l′←−j)

(8)

3.4 Multi-task Learning
In order to maximize the use of corpus information on related tasks, we adopt a multi-task learning
strategy to achieve the contribution of all corpora to each task by training multiple tasks at the same
time. We treat dependency parsing of source-side trees and target-side trees as two independent tasks.
These two tasks jointly learn syntactic knowledge by sharing the parameters of the Input Layer and
Encoder Layer, while using independent parameter configurations on the MLP layer and BiAffine layer
to capture the unique characteristics of their respective specifications. This design not only emphasizes
the commonalities between tasks but also retains their unique grammatical features, thereby effectively
enhancing the performance of the model on dependency parsing tasks.

4 Experiments

4.1 Experiment Settings
Data. To ensure a fair comparison of the effects of treebank conversion, we selected several published
Vietnamese dependency treebanks for our experimental analysis, including UD, VnDT, and VLSP2020.
Where UD and VLSP2020 follow the same annotation standards. This chapter primarily discusses the
processing and analysis of multiple datasets, including the source treebank VnDT, the target treebank UD,
and the bi-tree aligned data UDVnDT. For the bi-tree aligned data, we randomly selected 2900 sentences
from VnDT and parsed them using a well-trained target-end dependency analysis model, generating
pseudo-aligned tree data with noise. To minimize the impact of annotation errors on model performance,
we have manually corrected these data. From the bi-tree aligned data, we randomly selected 300 sentences
as the dev set and 600 sentences as the test set. The remaining approximately 2000 sentences were used as
the training set. The scale of each dataset is detailed in Table 2.
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UD VLSP2020 VnDT UDVnDT

train 1,400 8,152 8,977 1,996
dev 800 - 200 300
test 800 1,123 1020 600

Table 2: Vietnamese dependency treebanks

Evaluation. We employed the standard Unlabeled Attachment Score (UAS), which considers only the
correctness of dependency arcs, and the Labeled Attachment Score (LAS), which evaluates the accuracy
of both dependency arcs and dependency relations, to assess the performance of dependency parsing
models.

Hyper-parameters. In our model, we use 100-dimensional XLM-RoBERTa pre-trained word vectors
and 100-dimensional char embedding vectors. We set the number of layers of the BiLSTM encoding
layer to 3, the output dimension to 300, and the dimensions of the MLP layer to 500 and 100. The
dimensionality of the pattern embedding vectors is 50, the dimensionality of the dependency relation
labels is 50, and the output dimensionality of the Tree BiLSTM is 200.

In the training phase, our batch size is 40 sentences. After training all the training corpus, it is regarded
as one iteration. After each iteration, the performance of the model on the development set is evaluated.
When the performance of the model does not improve after 50 iterations, training is stop. For the multi-
task learning model,we proceed by first training a batch of UD data followed by a batch of VnDT data,
considering the completion of one training cycle on VnDT data as one iteration.

4.2 Treebank Conversion Results

Table 3 presents the results of the treebank conversion. Given that UD and VnDT adopt completely
different annotation standards, we compared the consistency of dependency arcs and dependency labels
within UDVnDT, where the consistency of dependency arcs was 52.4%, and the consistency of dependency
labels was only 21.3%. Among the two methods we compared, the PE method employs local encoding to
encode the source-side trees, while Tree BiLSTM uses global encoding. The experimental results indicate
that the encoding approach of Tree BiLSTM achieved the best performance. It shows that the global
encoding of the source-side trees can achieve better conversion performance when the data consistency is
low. On the contrary, the PE method relies more on data consistency and has certain limitations.

UDVnDT

LAS UAS LAS UAS

with Multi-task w/o Multi-task
Tree BiLSTM 65.88 81.06 64.80 80.09
PE 62.73 77.85 62.02 76.86
Tree BiLSTM+PE 63.89 78.53 63.33 79.69

Table 3: Conversion accuracy on UDVnDT.

At the same time, it naturally occurred to us to combine the Tree BiLSTM method with the PE methods,
with the last row of the table presenting the experimental results. Contrary to our intuition, the experiment
combining Tree BiLSTM and PE resulted in a decrease in performance, which we believe is due to
information redundancy. As shown in Figure 3, we selected sentences from the test set for analysis.
When encoding was done solely with Tree BiLSTM, the parser could produce results perfectly accurately.
However, when employing both Tree BiLSTM and PE for encoding, the discrepancy between the UD and
VnDT annotation rules was further amplified, leading to erroneous outputs from the model. Although the
two methods attempt to encode the source-side syntactic tree from two different perspectives, local and
global, the encoding through Tree BiLSTM already contains sufficient syntactic information, resulting in

CC
L 
20
24

Proceedings of the 23rd China National Conference on Computational Linguistics, pages 1035-1046, Taiyuan, China, July 25 - 28, 2024.
Volume 1: Main Conference Papers

(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China 1041



Computational Linguistics

redundancy rather than complementarity of the final syntactic information.

$ Dân mừng mà bộ đội cũng mừng
$ People happy and soldiers also happy

root
nsubj mark

parataxis

nsubj
advmod

root
sub coord

conj
sub

adv

adv

$ Dân mừng mà bộ đội cũng mừng
$ People happy and soldiers also happy

root
nsubj mark

parataxis

nsubj
advmod

root
nsubj

mark
parataxis

nsubj
advmod

Figure 3: On the left, the upper half shows the target-side UD tree, and the under half shows the source-side
VnDT tree. On the right, the upper half shows the output after Tree BiLSTM encoding, and the under half
shows the output after combining Tree BiLSTM and PE.

4.3 Analysis
Ablation study. As the syntactic information fused in the model comprises a combination of multiple
syntactic features, we conducted ablation experiments on these features. The results in table 4 illustrate the
effects of removing fused source-side syntactic features from two different methods. For the PE method,
the removal of any feature resulted in a slight decrease in model performance, indicating that incorporating
source-side syntactic information positively impacts the model. The most significant impact on the UAS
metric was the removal of li, which represents the dependency relation between word wi and its head
word, with a decrease of 1.52%. This suggests that source-side dependency relations indeed assist in
treebank conversion. For the Tree BiLSTM methods, introducing dependency relation labels from the
source-side trees slightly improved the model’s conversion effectiveness. After integrating the source-side
trees, LAS improved by 1.69% and UAS improved by 1.49%.

UDVnDT

LAS UAS LAS UAS

with Multi-task w/o Multi-task
PE 62.73 77.85 62.02 76.86
w/o li 61.38 76.33 61.03 76.11
w/o lj 61.47 76.45 61.14 76.20
w/o la 60.89 76.82 60.52 76.24
TreeLSTM 65.88 81.06 64.80 80.90
w/o labels 64.81 80.16 64.19 79.57

Table 4: Feature ablation.

Error analysis. Inspired by the ablation experiments, we delved deeper into the effects of label types
and both absolute and relative distances on conversion performance of the model. As shown in Figure
4, we analyzed the top ten most frequent label types in the dataset and their respective accuracy rates.
The results indicated that the higher the frequency of occurrence for a label, the higher the accuracy
of conversion, aligning with our understanding. However, some labels deviated from this pattern. We
believe this discrepancy results from significant differences in the annotation standards of the dataset.
For instance, the label “nsubj" under the UD dataset’s annotation standards can be further subdivided
into “nsubj", “nsubj:nn", “nsubj:pass",“nsubj:xsubj" etc., which could significantly impact conversion
accuracy of the model. Furthermore, we also evaluated the consistency between the UD and VnDT
datasets, revealing label consistency at only 52.4% and arc consistency at 21.3%. This further validates
the significant impact of annotation standard differences on the model’s conversion performance.
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Figure 4: Statistics on the accuracy of
the distances.

Figure 5: Statistics on the frequency and
accuracy of the dependency labels.

In addition, we also analyzed the impact of both relative and absolute distances between words in a
sentence on accuracy, as illustrated in Figure 4. Regardless of whether it was relative or absolute distance,
accuracy tended to decrease as the distance increased. However, interestingly, when the relative distance
was 8, there was a slight increase in accuracy. Upon analysis, we believe this anomaly is due to the fewer
instances of dependency arcs with a relative distance of 8 in the dataset. Hence, we counted the number of
dependency arcs with relative distances ranging from 1 to 8 in the dual-tree aligned data UDVnDT. We
found that there were 232 dependency arcs at a distance of 6, and only 10 at a distance of 8. Therefore, the
reduction in the number of instances to some extent could cause a slight increase in accuracy.

A similar situation exists for absolute distance. As shown in Figure 5, when the absolute distance is 7,
the accuracy rate is improved by 3.83% compared with when the absolute distance is 6. We found that
at an absolute distance of 6, a total of 24 different labels appeared; While at an absolute distance of 7,
this number was reduced to 18. Further analysis found that “punct" is the most frequently occurring tag
among all tag types. Specifically when the absolute distance is 6, the proportion of “punct" label is 31%,
and when the absolute distance is 7, this proportion rises to 40%. From the analysis in Figure 4, we can
see that the “punct" is the label with the highest frequency of occurrence and the highest accuracy. The
high proportion of “punct" labels is directly related to the improvement of its accuracy. At the same time,
the reduction of label types also helps to improve accuracy to a certain extent.

4.4 Utilization of Conversion Data

Table 5 presents the final experimental results utilizing the converted data. Choudhary and
O’riordan (2023) employ BERT fine-tuned in 12 languages as an encoder on an End-to-end Seq2seq
Dependency Parser. Le-Hong and Cambria (2024) integrate dependency graph embeddings into the model
using GRU. Compared with these works, our model achieves excellent results even without additional
heterogeneous data, further verifying the effectiveness of our model.

Model Training Data LAS UAS

Choudhary and O’riordan (2023) UD - 68.37
Le-Hong and Cambria (2024) UD 47.24 52.06
Our Model UD 65.10 78.38

Multi-task UD&VnDT 65.25 78.65
Our Model UD&Converted VnDT 72.22 82.23

Table 5: Performance of different dependency parsing models on the test set.
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We test the base model, a multi-task learning model, and a conversion model employing the Tree
BiLSTM method on the UD dataset. The results indicate that compared to the base model, the multi-task
learning model did not demonstrate significant performance improvements. This may be due to the
low consistency between the source treebank and the target treebank, and the two share fewer features,
resulting in insufficient improvement in model performance. Furthermore, we use the trained conversion
model to convert the VnDT training set, and then merge the converted VnDT treebank and UD treebank
as a large training set to train the model. It can be seen that as the data size increases, the performance of
the model has been greatly improved. LAS and UAS have improved by 7.12% and 3.85% respectively,
which proves that the treebank conversion method can effectively utilize the syntactic information of
the source treebank. In summary, the treebank conversion method that introduces source-side syntactic
information can effectively improve the performance of the target-side syntactic analysis model; and when
the consistency of the data is low, compared with the multi-task learning method, the treebank conversion
method can be more direct and efficient Utilize the source treebank.

5 Conclusion

In this work, we presented a multi-feature enhanced multi-task learning framework for Vietnamese
treebank conversion, addressing the challenges of limited corpora and the scarcity of large-scale annotated
data in Vietnamese dependency parsing. Our approach leverages Tree BiLSTM and pattern embedding to
capture both global and local syntactic features from the source treebank, and integrates these features into
a multi-task learning framework, enhancing the representation capability for Vietnamese. The experiments
conducted on benchmark datasets demonstrate the effectiveness of our model, which not only facilitates
the conversion of heterogeneous Vietnamese Treebanks into a unified one but also significantly improves
the Vietnamese dependency parsing accuracy.
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