@inproceedings{yili-etal-2024-joint,
title = "Joint Entity and Relation Extraction Based on Bidirectional Update and Long-Term Memory Gate Mechanism",
author = "Yili, Qian and
Enlong, Ren and
Haonan, Xu",
editor = "Sun, Maosong and
Liang, Jiye and
Han, Xianpei and
Liu, Zhiyuan and
He, Yulan",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-1.85/",
pages = "1099--1111",
language = "eng",
abstract = "{\textquotedblleft}Joint entity recognition and relation extraction are important tasks in natural language process-ing. While some previous work has recognized the importance of relation information in jointextraction, excessively focusing on relation information without utilizing entity information maylead to information loss and affect the identification of relation tuples. Additionally, ignoring theutilization of original information may result in the loss of hierarchical and semantic information,further reducing the richness of information.To address these issues, we propose a bidirectionalinformation updating mechanism that integrates entity and relation information, iteratively fus-ing fine-grained information about entities and relations. We introduce a long-term memory gatemechanism to update and utilize original information using feature information, thereby enhanc-ing the model`s ability for entity recognition and relation extraction. We evaluated our approachon two Chinese datasets and achieved state-of-the-art results.{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yili-etal-2024-joint">
<titleInfo>
<title>Joint Entity and Relation Extraction Based on Bidirectional Update and Long-Term Memory Gate Mechanism</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qian</namePart>
<namePart type="family">Yili</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ren</namePart>
<namePart type="family">Enlong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xu</namePart>
<namePart type="family">Haonan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiye</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“Joint entity recognition and relation extraction are important tasks in natural language process-ing. While some previous work has recognized the importance of relation information in jointextraction, excessively focusing on relation information without utilizing entity information maylead to information loss and affect the identification of relation tuples. Additionally, ignoring theutilization of original information may result in the loss of hierarchical and semantic information,further reducing the richness of information.To address these issues, we propose a bidirectionalinformation updating mechanism that integrates entity and relation information, iteratively fus-ing fine-grained information about entities and relations. We introduce a long-term memory gatemechanism to update and utilize original information using feature information, thereby enhanc-ing the model‘s ability for entity recognition and relation extraction. We evaluated our approachon two Chinese datasets and achieved state-of-the-art results.”</abstract>
<identifier type="citekey">yili-etal-2024-joint</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-1.85/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>1099</start>
<end>1111</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Joint Entity and Relation Extraction Based on Bidirectional Update and Long-Term Memory Gate Mechanism
%A Yili, Qian
%A Enlong, Ren
%A Haonan, Xu
%Y Sun, Maosong
%Y Liang, Jiye
%Y Han, Xianpei
%Y Liu, Zhiyuan
%Y He, Yulan
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G eng
%F yili-etal-2024-joint
%X “Joint entity recognition and relation extraction are important tasks in natural language process-ing. While some previous work has recognized the importance of relation information in jointextraction, excessively focusing on relation information without utilizing entity information maylead to information loss and affect the identification of relation tuples. Additionally, ignoring theutilization of original information may result in the loss of hierarchical and semantic information,further reducing the richness of information.To address these issues, we propose a bidirectionalinformation updating mechanism that integrates entity and relation information, iteratively fus-ing fine-grained information about entities and relations. We introduce a long-term memory gatemechanism to update and utilize original information using feature information, thereby enhanc-ing the model‘s ability for entity recognition and relation extraction. We evaluated our approachon two Chinese datasets and achieved state-of-the-art results.”
%U https://aclanthology.org/2024.ccl-1.85/
%P 1099-1111
Markdown (Informal)
[Joint Entity and Relation Extraction Based on Bidirectional Update and Long-Term Memory Gate Mechanism](https://aclanthology.org/2024.ccl-1.85/) (Yili et al., CCL 2024)
ACL