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Abstract

Dialect speech recognition has always been one of the challenges in Automatic Speech Recog-
nition (ASR) systems. While lots of ASR systems perform well in Mandarin, their performance
significantly drops when handling dialect speech. This is mainly due to the obvious differences
between dialects and Mandarin in pronunciation and the data scarcity of dialect speech. In this
paper, we propose DialectMoE, a Chinese multi-dialects speech recognition model based on
Mixture-of-Experts (MoE) in a low-resource conditions. Specifically, DialectMoE assigns input
sequences to a set of experts using a dynamic routing algorithm, with each expert potentially
trained for a specific dialect. Subsequently, the outputs of these experts are combined to derive
the final output. Due to the similarities among dialects, distinct experts may offer assistance in
recognizing other dialects as well. Experimental results on the Datatang dialect public dataset
show that, compared with the baseline model, DialectMoE reduces Character Error Rate (CER)
for Sichuan, Yunnan, Hubei and Henan dialects by 23.6%, 32.6%, 39.2% and 35.09% respec-
tively. The proposed DialectMoE model demonstrates outstanding performance in multi-dialects
speech recognition.

1 Introduction

The application domains of speech recognition technology are extensive, encompassing diverse fields
such as voice assistants, smart homes, and automotive voice interaction, among others. Thanks to the
advancements in deep learning, Automatic Speech Recognition (ASR) systems have made remarkable
strides in recognizing Mandarin speech (Malik et al., 2021; Wang et al., 2019; Alharbi et al., 2021).

Dialect serves as a prevalent mode of everyday communication among the Chinese populace. How-
ever, the performance of ASR systems remains limited in dialect speech, posing a significant challenge
in the field of speech recognition technology (Hinsvark et al., 2021; Alsharhan et al., 2020) due to the
inherent variations and distinct characteristics in pronunciation among dialects and Mandarin. Therefore,
improving the accuracy and adaptability of Chinese ASR systems is significant and meaningful for multi-
dialect. Our study mainly focuses on Chinese dialects, the proposed method can also be generalized to
other dialects.

Chinese dialects are typically classified into ten main categories, each exhibiting notable differences
in pronunciation, tone, vocabulary, and grammar (Ho et al., 2015). Chinese is a tonal language, where
each character corresponds to a specific tone, a feature that is prevalent in most of its dialects as well.
The pronunciation of a given Chinese character with different tones imparts markedly distinct meanings.
This underscores the profound significance of tones in the comprehension of Chinese phonetics. (Ho
et al., 2015; Sproat et al., 2004). Figure 1 depicts the tonal distinctions among Standard Mandarin,
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Figure 1: The tonal distinctions among Standard Mandarin, Yunnan dialect, and Sichuan dialect.

Yunnan dialect, and Sichuan dialect. It is evident that notable in tone between Standard Mandarin and
Yunnan dialect as well as Sichuan dialect in the second, third, and fourth tones. However, Yunnan dialect
and Sichuan dialect exhibit a pronunciation similarity in specific tones. The change in tone reveals
differences and similarities between Standard Mandarin and various dialects. Hence, considering both
the differences and similarities in pronunciation among various dialects alongside Standard Mandarin
becomes crucial for the advancement of Chinese speech recognition systems.

In recent years, numerous researches have focused on tackling the challenge of poor performance in
dialect speech recognition models (Li et al., 2018; Ren et al., 2019; Zhang et al., 2022). The tradi-
tional way is based on different modeling methods to improve the effect of dialect speech recognition.
Humphries (1996) employed an adaptive method that utilizes a pronunciation vocabulary with dialect
data to capture differences between standard and dialect pronunciations. Li (2019) proposed a novel
method for modeling Chinese characters based on radicals, effectively addressing the issue of dialect
modeling difficulty. This method significantly reduces the required size of radical dictionaries compared
to ordinary character dictionaries. Recently, multitask-based methods have been widely used in the task
of dialect speech recognition. Compared with the traditional method, the multi-task learning method is
more efficient. Elfeky (2016) proposed constructing a dialect classification model and a separate speech
recognition model for each dialect. The dialect classification model is used to select the corresponding di-
alect speech recognition model. Dan (2022) proposed a multi-task training strategy that combines dialect
classification with dialect speech recognition, bridging the substantial gap between Mandarin and dialect
acoustic properties. However, these investigations are contingent upon extensive dialectal datasets and
do not examine the potential influence of commonalities among various dialects on model performance.

To construct a reliable dialect speech recognition model in low-resource conditions, Jiang (2023)
introduced a transfer learning-based approach, it involves a model trained on Mandarin and fine-tunes
with small-scale dialect data. However, relying solely on transfer learning may not adequately capture the
distinctions between dialects and Mandarin. Wang (2023) proposed the Aformer model with multi-stage
training strategy, which can capture diverse acoustic information in different training stage, enabling the
model to effectively adapt to dialect data. The aforementioned studies focus on the training strategy
and model expansion, they do not fully consider the differences and similarities between dialects and
Mandarin.

In this paper, we present DialectMoE, a multi-dialect speech recognition model based on Mixture-of-
Experts (MoE), aimed at improving the performance of multi-dialects speech recognition in low-resource
conditions. DialectMoE is architecturally structured with dual encoders: a dialect encoder and a general
encoder. The main contributions of the paper include:

• We propose a three-stage training methodology designed to enhance the model’s adaptability in
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addressing low-resource multi-dialect scenarios through different stages. Detailed specifics will be
expounded upon in Section 3.3.

• We introduce MoE layers and enhance the dynamic routing algorithm to enable the combination of
acoustic features from both the input sequence and the dialect encoder during the expert selection
process.

• The experiment results show that DialectMoE reduces Character Error Rate (CER) compared to
the baseline model for Sichuan, Yunnan, Hubei and Henan dialects by 23.6%, 32.6%, 39.2% and
35.09%, respectively.

2 Related Work

2.1 Conformer-based ASR
The Conformer, a convolution-augmented Transformer introduced in (Gulati et al., 2020), has been
widely acknowledged as the state-of-the-art end-to-end ASR technology owing to its exceptional per-
formance in ASR tasks. In recent years, several researchers have proposed Conformer variants (Peng et
al., 2022; Sehoon et al., 2023) to further enhance the capabilities of speech recognition. The Conformer
module comprises two feed-forward modules, a multi-head self-attention module, and a convolution
module. The output y of one Conformer block for a given input x can be defined as follows:

x̂ = x+
1

2
FFN1(x) (1)

x̃ = x̂+MHSA(x̂) (2)

x̄ = x̃+Conv(x̃) (3)

y = LN(x̄+
1

2
FNN2(x̄)) (4)

where FNN1 denotes the first feedforward module, FNN2 denotes the second feedforward network,
MHSA denotes the multi-head self-attention module, Conv denotes the convolution module, and LN
denotes layer normalization. For additional information regarding the Conformer ASR model, please
refer to (Gulati et al., 2020).

During Conformer training, the Joint CTC-Attention loss function (Hori et al., 2017) is utilized. This
loss function is commonly used in present-day speech recognition technology. In this paper, the joint
CTC-Attention loss is incorporated into the total loss function. The loss function is outlined as follows:

Lall = (1− λ)Latt + λLctc (5)

where Latt denotes the decoding loss of the Attention decoder, and Lctc denotes the CTC loss, λ is a
hyper parameter which denotes the weight of these two loss function.

2.2 Mixture-of-Experts Based Speech Recognition
The MoE based methods offer a solution for more efficient training and inference by selectively activating
different experts in the model based on different inputs (Jacobs et al., 1991; Shazeer et al., 2017). This
enables the model to adapt to a wide range of inputs and scale to more parameters while maintaining a
consistent computational cost. The MoE based models have demonstrated their effectiveness in natural
language processing (Fedus et al., 2022; Du et al., 2022) and computer vision (Riquelme et al., 2021;
Fan et al., 2022).

In real-world applications, speech recognition systems are required to adeptly cope with diverse in-
put conditions, encompassing variations in speakers, accents, and acoustic environments (Zilvan et al.,
2021). However, conventional speech recognition models have a fixed computational cost and can-
not adapt to the complexity of input instances. You (2021; 2022) explore the MoE based model for
speech recognition, named SpeechMoE, and propose a new router architecture which integrates addi-
tional global domain and embeddings into router input to promote adaptability. Additionally, a multi-
lingual speech recognition network (MoLE) was introduced (Kwon et al., 2023) to analyze audio input
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data from multiple languages and identify expert networks suitable for each language. Simultaneously,
a language-independent expert network was also introduced, and the selected expert network and the
language-independent expert network collectively fulfill the language requirements necessary for effec-
tive speech recognition.

Employing the MoE mechanism to determine expert activation during the forward propagation pro-
cess manifests a notable capacity for accommodating the inherent variability in multi-dialectal speech
across different input sequences. Nevertheless, the conventional MoE paradigm relies solely on the input
sequence for expert selection, and the information in the present input does not inherently ensure the
optimal suitability of the selected experts. Therefore, the incorporation of supplementary dialectal infor-
mation to facilitate expert selection stands forth as a judicious resolution, enhancing the precision and
adaptability of the chosen experts to the distinctive intricacies characterizing the multi-dialectal speech
context. Furthermore, the exploration of MOE-based methods in the domain of multi-dialect speech
recognition remains limited.

Figure 2: (a) DialectMoE overall architecture, where the general encoder consists of N DialcetMoE
blocks. (b) Architecture of the DialectMoE encoder block module.

3 DialectMoE

3.1 Overall Architecture of DialectMoE

The overall architecture of DialectMoE is shown in Figure 2(a). The original audio sequence under-
goes preprocessing by the frontend module to extract filter bank (FBank) features (Singh et al., 2020).
Subsequently, the convolutional downsampling is applied to temporally downsample the audio feature
sequence. The dialect encoder, consisting of 6 layers of vanilla Conformer encoder, captures dialect
information from the feature sequences. The general encoder, which comprises 12 layers of Dialect-
MoE encoder blocks, is responsible for capturing speech information in a dialect-agnostic manner. Both
encoders share the same input but focus on different aspects of information.

The detailed structure of the DialectMoE block is presented in Figure 2(b). With the DialectMoE
block, the input sequence is first passed through the Feed-Forward Network (FFN) layer, followed by
Attention and Convolutional Neural Network (CNN) layer to extract global and local information, re-
spectively. Then the appropriate expert within the MoE layer is selected based on the dynamic routing.
The output of experts are multiplied by the weight assigned by the router layer.

Compared to the widely used vanilla Conformer block (Gulati et al., 2020), our DialectMoE block
incorporates MoE layers to address complex and variable scenarios encountered in real-world situations.
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Figure 3: Illustration of dynamic routing algorithm.

The dialect information captured by the dialect encoder is weighted by the router layer, which enables
the router layer to choose more appropriate experts based on both dialect features and general features
obtained from two encoders. This dynamic routing mechanism proves more effective in intricate speech
scenarios, especially those involving multiple dialects.

3.2 Dialect Adaptive Dynamic Expert Routing
In the context of multi-dialect speech recognition, effectively addressing the diversity of dialectal varia-
tions is crucial. We present a novel dynamic routing algorithm aimed at enhancing the adaptability and
generalization of the model to diverse dialects. The proposed algorithm leverages the input sequences
from the current MoE layer and the dialect information provided by the dialect encoder to select appro-
priate experts. To evaluate the impact of different dialect embedding on routing, we explore the following
three strategies: utilizing the embedding (embed) independently, and both concatenating (concat) and
adding (add) the embeddings to the output of the convolutional layers. The output of the dialect encoder
is denoted as XD

encoder ⊆ RT×d, where T represents the sequence length and d denotes the feature di-
mension. Assuming that there are N experts, the output r ⊆ RT×N of the routing layer can be defined
as follows:

r = Wr · Concat(x̄,XD
encoder) (6)

r = Wr ·Add(x̄,XD
encoder) (7)

r = Wr · XD
encoder (8)

where Wr represents the weight parameter of the router layer, and x̄ denotes the output of the convolution
module. These three dynamic routing strategies are the ones we consider employing. It is worth noting
that while the general router layer selects experts based on the input sequence x̄, the algorithm we
designed intuitively makes more sense as it incorporates the output of the dialect encoder to select the
most suitable expert.

The router layer selects the expert with the highest probability through dynamic routing, which is
based on the router output r. The dynamic routing probability is then defined as follows:

pi =
expri∑N
j=1 exp

rj
(9)

where pi ⊆ RT×N is the probability that the i expert is selected, the output Omoe ⊆ RT×d of the MoE
layer can be formally defined as follows:

Omoe = pi · Ei(x̄) (10)
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where Ei is the output of the i expert selected. Figure 3 illustrates the process of dynamic routing.
In order to incorporate dialect information into the decoder, DialectMoE incorporates an information

fusion step by combining the outputs of two separate encoders. This fusion process, illustrated as the
Acoustic Fusion Module (AFM) in Figure 2(a), occurs prior to transmitting the results to the decoder.
The fusion process is defined as follows:

XA
encoder = Concat(XG

encoder,XD
encoder) (11)

where XA
encoder denotes the result of fusion of information output by two two different encoders, and

XG
encoder denotes the result output by a general encoder.
The comprehensive loss function for speech recognition comprises the combined CTC-Attention loss

(Hori et al., 2017), as explained previously, along with the supplementary balance loss (Fedus et al.,
2022). The complete formulation of the loss function is as follows:

Lall = λLctc + (1− λ)Latt + αLb (12)

where α is the weight of the balance loss (α = 0.1) and λ is the weight of the speech recognition loss
(λ = 0.3), Lb denotes the balance loss.

3.3 Training Strategies
Considering the significant disparity in the quantities of Mandarin and dialect data, low-resource dialect
speech recognition scenarios commonly exhibit limited labeled dialect speech data, typically ranging
from a few to tens of hours. This insufficiency hampers the development of a reliable speech recognition
model. To address this issue, this study introduces a multi-stage training strategy. The training process
encompasses the following sequential steps:

1. Pre-training: The Conformer model is used as a general encoder for DialectMoE to implement pre-
training on Mandarin datasets. The pre-training step allows the model to capture various common
speech features, thus reducing the complexity of learning for the dialect recognition task.

2. Training Dialect Encoder: A Conformer Encoder is initialized as a dialect encoder and is trained on
the dialect classification task using both dialect and Mandarin data. The objective of this step is to
enable the dialect encoder to learn the acoustic differences between multiple dialects, assisting the
general encoder in dialect speech recognition tasks.

3. Training DialectMoE: The parameters of the dialect encoder are frozen, and the second feedforward
network layer in the pre-trained Conformer model is initialized with N experts. Use only low-
resource dialect training data to train the final DialectMoE model.

By pre-training, the initial model acquires a substantial set of effective parameters, thereby conferring
notable advantages for last training stages. In the second phase, the dialect encoder is trained on a dialect
identification task, enabling it to focus on differences between multiple dialects and Mandarin. In the
last stage, only multi-dialect data is used for training. This approach enhances DialectMoE’s capability
to adeptly capture shared acoustic characteristics across multiple dialects. The proposed method is eval-
uated based on extensive comparison and ablation experiments, which are comprehensively detailed in
Section 4.

4 Experiments

4.1 Datasets
The AIShell-1 dataset (Bu et al., 2017) serves as the Mandarin speech corpus in this study. This Mandarin
speech dataset is widely employed in the field of Chinese speech recognition technology.

For the Chinese dialect dataset, an open-source dataset provided by Datatang1 is utilized in this study.
It comprises a training set of 30 hours of Sichuan and Yunnan dialects and a test set of 1.5 hours featuring

1https://www.datatang.com
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Dataset Train(h) Test(h)
Aishell 164 10
Sichuan (SC) 28.5 1.5
Yunnan (YN) 28.5 1.5
Henan (HN) 0 1.5
Hubei (HB) 0 1.5

Table 1: Details of both Dialect and Mandarin datasets.

Henan and Hubei dialects. Within this study, Sichuan (SC) and Yunnan (YN) dialects are used to test the
adaptability of the model to multi-dialect data, and Henan (HN) and Hubei (HB) dialects are used to test
the generalization of the model to multi-dialect data. More details are shown in Table 1.

4.2 Experiment Setup

All experiments were conducted using the Wenet (Zhang et al., 2017) end-to-end speech toolkit. Our
methodology involved extracting an 80-dimensional log-Mel filter bank (FBank) as the acoustic input
feature, with a window size of 25 ms and a step size of 10 ms. To ensure feature normalization, we
applied mean and variance normalization (MVN) calculated from the training set on Fbank. To augment
the low-resource dialect data, we employed speed perturbation and SpecAugment (Park et al., 2017)
techniques. No additional language models were incorporated into the experiments.

For the pre-training model, we utilized a Conformer encoder trained on the Mandarin dataset. The
general encoder of DialectMoE consists of 12 Conformer encoder layers with a feed-forward dimension
of 2048 and an attention dimension of 256, employing 4 self-attention heads. This model was trained
using the Adam optimizer (Kingma et al., 2014). Furthermore, we adopted the warmup learning schedule
(Gotmare et al., 2018) for the initial 25K training iterations, initializing the learning rate at 0.002, and
set the label smoothing (Szegedy et al., 2016) weight and dropout to 0.1 for model regularization. The
decoder consists of a 6-layer Transformer, while the dialect encoder comprises a 6-layer Conformer
encoder. The cross-entropy loss for classifying dialect is always applied.

The proposed DialectMoE is initialized with the pre-trained general encoder, dialect encoder, and
decoder. The second feedforward layer in each Conformer layer of the general encoder is initialized as
an N expert (N = 4), with the expert parameters being the pre-trained feedforward network parameters.
Training employed the same Adam optimizer, and the number of warm-up steps in the pre-training
learning plan was adjusted to 10000, with an initial learning rate of 0.001.

4.3 Main Results

ID Model Params(M) SC YN HN HB
M1 Conformer (Mandarin) 46.1 M 82.75 81.42 82.26 87.47
M2 FT-Conformer 46.1 M 15.60 14.06 54.91 57.18
M3 Conformer (Mandarin+Dialect) 46.1 M 13.86 12.02 41.28 48.37
M4 MT-Conformer(DID+ASR) 47.2 M 17.79 15.64 47.78 56.55
M5 MT-Conformer(DID&ASR) 46.2 M 16.09 14.05 41.28 48.37
M6 Aformer 68.3 M 13.21 12.76 35.32 39.89
M7 DialectMoE 93.8 M 11.91 9.84 33.38 37.11

Table 2: CER(%) on Chinese Dialect ASR task. FT represents the fine-tuning step and MT represents
the multitask-based approach.

In this paper, we meticulously design comparison experiments with other speech recognition mod-
els to showcase the effectiveness of our proposed method. The experimental results presented in this
study were reproduced using the open-source speech processing toolkit Wenet (Zhang et al., 2017). Ta-
ble 2 illustrates the performance of each ASR model in dialect speech recognition under low-resource
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conditions. The evaluation metric employed is the Character Error Rate (CER).
M1 represents the Conformer model that was exclusively pre-trained on the Aishell Mandarin dataset,

consisting of 178 hours of data.
M2 denotes the model fine-tuned from M1 using the low-resource dialect dataset.
M3 corresponds to the model trained directly on the combined dataset of both dialect and Mandarin

speech.
M4 and M5 refer to the multi-tasking models trained on the combined dataset, with a distinction that

M4 predicts the dialect category in the encoder while the decoder focuses on recognizing the speech text,
whereas M5 predicts both the dialect category and the speech text in the decoder.

M6 represents the multi-pass model proposed in (Wang et al., 2023) for the training of the Aformer.
M7 signifies the DialectMoE model proposed in this paper.
The results obtained from the M1 model demonstrate a notably poor performance in recognizing

dialectal speech within the Mandarin speech recognition model. However, by fine-tuning the M1 model
with dialect data, the CER of the M2 model for Sichuan and Yunnan dialects is significantly reduced,
although further optimization is still required. To address this, our paper proposes the DialectMoE model,
which surpasses existing studies and baselines in terms of performance. In comparison to the fine-tuned
model of M2, the DialectMoE model exhibits a reduction in CER of 23.6% and 32.6% for the Sichuan
and Yunnan dialects, respectively. Additionally, it achieves a reduction of 39.2% and 35.09% for the
Henan and Hubei dialects, respectively.

4.4 Ablation Studies

4.4.1 Ablation of dynamic routing strategy

Strategy SC YN HN HB
normal 13.43 11.83 35.22 38.67
embed 12.53 10.20 34.95 38.65
concat 12.18 9.97 33.55 37.09
add 12.41 10.36 34.19 37.23
normal+fusion 13.92 12.19 35.27 38.72
embed+fusion 12.23 10.21 33.50 37.55
concat+fusion 11.91 9.84 33.38 37.11
add+fusion 12.49 10.13 33.66 37.65

Table 3: Ablation of different routing strategy.

This paper incorporates ablation experiments to investigate the effectiveness of the proposed dynamic
routing algorithm and model design. Table 3 presents the impact of utilizing different dynamic routing
algorithms and the merging of two encoder outputs before the decoder. In ”normal”, the dynamic routing
algorithm proposed in this paper is not employed, and the experts are directly selected based on the input
sequence, similar to the approach in (Fedus et al., 2022). The strategy column in Table 3 indicates the us-
age of different dynamic routing algorithms:“embed” signifies the utilization of only the dialect encoder
outputs, “concat” denotes the concatenation of the dialect encoder outputs with the input sequence, and
“add” indicates the summation of the dialect encoder outputs with the input sequence. The “fusion”
entry indicates whether or not the two encoder outputs should be fused before reaching the decoder.,
whether they go through AFM. The experiments employing the “concat+fusion” strategy along with the
fusion of the two encoder outputs demonstrate optimal results across the four different dialect test sets.

4.4.2 Ablation of experts number
To investigate the impact of initializing a different number of experts in DialectMoE on the overall model
performance, we conducted an experiment with varying numbers of experts, specifically 2, 4, and 8. The
experimental results, as shown in Table 4, highlight that the model size increases with an increasing
number of experts. However, the common notion that a larger number of model participants leads to
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Model Params(M) SC YN HN HB
MoE-2e 68.5M 12.39 10.21 33.84 38.37
MoE-4e 93.8M 11.91 9.84 33.38 37.11
MoE-8e 134.5M 12.94 10.44 34.09 38.26

Table 4: Ablation of experts number.

improved performance does not hold true under low-resource conditions. The results indicate that, for
low-resource dialect data, an excessive number of experts does not enhance model performance; in fact,
it diminishes it. Experimental evidence supports the conclusion that setting the number of experts to
4 is more appropriate in this context. It is noteworthy that when the number of experts is set to 2, the
number of model parameters matches the number of Aformer (Wang et al., 2023) parameters. However,
despite this similarity, our results outperform the baseline. This finding further validates the efficacy and
correctness of our proposed method.

4.4.3 Ablation of the number of experts selected

Top-k Time(s) SC YN HN HB
4 1.46s 12.01 10.03 33.31 37.08
2 0.94s 11.93 9.81 33.57 37.24
1 0.68s 11.91 9.84 33.38 37.11

Table 5: Ablation of the number of experts selected.

In the vanilla MoE, a top-k approach is employed to select a combination of k experts for routing the
input sequence. However, in this paper, a Softmax approach, specifically top-1, is utilized. To further
investigate the effectiveness of the proposed dynamic routing algorithm, experiments were conducted
to explore the impact of the number of selected experts. As presented in Table 5, when the number of
selected experts is set to 4, there is an improvement in performance for dialects that are not part of the
training dataset (Henan and Hubei dialects). This suggests that increasing the number of selected experts
can enhance the model’s generalization to external data. The model’s performance remains similar when
the number of selected experts is 2 or 1. However, it is worth noting that the decoding time for a single
speech increases by approximately 53% when the number of selected experts is 4 compared to when it is
1. This indicates that the number of selected experts has a minimal impact on the model’s performance
but significantly affects decoding efficiency, which is crucial for a robust speech recognition system.

4.5 Layer-Wise Analysis of Experts
In Figure 4, We randomly extracted 100 samples from the test sets of Sichuan and Kunming dialects to
visualize the expert weights. We can observe certain patterns in the weights. Across the initial three
layers of the model, both dialects manifest a heightened degree of distinctiveness in expert selection,
indicative of specific groups of experts concentrating exclusively on dialect-specific information. Within
the intermediate layers of the model, expert weights display a diminished prominence, yet discernible
differences persist in the expert weights associated with the two dialects. This observation suggests
that varying combinations of experts implicitly encapsulate distinctive information pertaining to dialec-
tal variations. In the concluding three layers of the model, the deployed experts exhibit near-identical
characteristics, thereby indirectly affirming the model’s proficiency in capturing shared features between
Sichuan and Kunming dialects.

5 Conclusion

In this manuscript, we present a multi-dialectal speech recognition model based on MoE termed Dialect-
MoE. Structurally, it incorporates a dual-encoder architecture, wherein the general encoder is dedicated
to acquiring general acoustic representations, and the dialect encoder is specialized for acquiring acous-
tic representations across various dialects. A refinement in the dynamic routing strategy within the MoE
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Figure 4: The expert weights are visualized on Sichuan dialect and Kunming dialect.

layer of the universal encoder has been introduced to enable the selection of appropriate experts based on
the acoustic information specific to the dialect in the input sequence. Furthermore, we propose a three-
stage training methodology to facilitate DialectMoE in learning distinct tasks at different phases, thereby
enhancing its adaptability and performance across varying aspects of the multi-dialectal speech recogni-
tion task. Experimental results demonstrate that the proposed DialectMoE model achieves remarkable
performance in multi-dialects speech recognition tasks.

6 Limitations

While the MoE-based approach can effectively enhance model performance, it inherently results in an
increase in the number of model parameters. This increase in parameters can lead to higher training costs
and occupies more space on, e.g., a GPU, which are inevitable consequences. Therefore, it is imperative
to conduct further research on model compression techniques to mitigate these issues.

References
Alharbi, Sadeen and Alrazgan, Muna and Alrashed, Alanoud and Alnomasi, Turkiayh and Almojel, Raghad and

Alharbi, Rimah and Alharbi, Saja and Alturki, Sahar and Alshehri, Fatimah and Almojil, Maha. 2021. Auto-
matic speech recognition: Systematic literature review. IEEE Access,9:131858–131876.

Alsharhan, Eiman and Ramsay, Allan. 2020. Investigating the effects of gender, dialect, and training size on the
performance of Arabic speech recognition. Language Resources and Evaluation,54:975–998.

Bu, Hui and Du, Jiayu and Na, Xingyu and Wu, Bengu and Zheng, Hao. 2017. Aishell-1: An open-source
mandarin speech corpus and a speech recognition baseline. 2017 20th conference of the oriental chapter of
the international coordinating committee on speech databases and speech I/O systems and assessment (O-
COCOSDA),pages 1–5.

Dan, Zhengjia and Zhao, Yue and Bi, Xiaojun and Wu, Licheng and Ji, Qiang. 2022. Multi-task transformer with
adaptive cross-entropy loss for multi-dialect speech recognition. Entropy,24(10):1429.

Du, Nan and Huang, Yanping and Dai, Andrew M and Tong, Simon and Lepikhin, Dmitry and Xu, Yuanzhong and
Krikun, Maxim and Zhou, Yanqi and Yu, Adams Wei and Firat, Orhan and others. 2022. Glam: Efficient scaling
of language models with mixture-of-experts. International Conference on Machine Learning,pages 5547–5569.

Elfeky, Mohamed and Bastani, Meysam and Velez, Xavier and Moreno, Pedro and Waters, Austin. 2016. Towards
acoustic model unification across dialects. 2016 IEEE Spoken Language Technology Workshop (SLT),pages
624–628.

CC
L 
20
24

Proceedings of the 23rd China National Conference on Computational Linguistics, pages 1148-1159, Taiyuan, China, July 25 - 28, 2024.
Volume 1: Main Conference Papers

(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China 1157



Computational Linguistics

Fan, Zhiwen and Sarkar, Rishov and Jiang, Ziyu and Chen, Tianlong and Zou, Kai and Cheng, Yu and Hao, Cong
and Wang, Zhangyang and others. 2022. M3vit: Mixture-of-experts vision transformer for efficient multi-task
learning with model-accelerator co-design. Advances in Neural Information Processing Systems,35:28441–
28457.

Fedus, William and Zoph, Barret and Shazeer, Noam. 2022. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. The Journal of Machine Learning Research,23(1):5232–5270.

Gotmare, Akhilesh and Keskar, Nitish Shirish and Xiong, Caiming and Socher, Richard. 2018. A closer look at
deep learning heuristics: Learning rate restarts, warmup and distillation. arXiv preprint arXiv:1810.13243.

Gulati, Anmol and Qin, James and Chiu, Chung-Cheng and Parmar, Niki and Zhang, Yu and Yu, Jiahui and Han,
Wei and Wang, Shibo and Zhang, Zhengdong and Wu, Yonghui and others. 2020. Conformer: Convolution-
augmented transformer for speech recognition. arXiv preprint arXiv:2005.08100.

Hinsvark, Arthur and Delworth, Natalie and Del Rio, Miguel and McNamara, Quinten and Dong, Joshua and
Westerman, Ryan and Huang, Michelle and Palakapilly, Joseph and Drexler, Jennifer and Pirkin, Ilya and others.
2021. Accented speech recognition: A survey. arXiv preprint arXiv:2104.10747.

Ho, Dah-an. 2015. Chinese dialects. The Oxford handbook of Chinese linguistics,pages 149–159.

Hori, Takaaki and Watanabe, Shinji and Hershey, John R. 2017. Joint CTC/attention decoding for end-to-end
speech recognition. Proceedings of the 55th Annual Meeting of the Association for Computational Linguis-
tics,pages 518–529.

Humphries, Jason J and Woodland, Philip C and Pearce, D. 1996. Using accent-specific pronunciation modelling
for robust speech recognition. Proceeding of Fourth International Conference on Spoken Language Processing.
ICSLP’96,4:2324–2327.

Jacobs, Robert A and Jordan, Michael I and Nowlan, Steven J and Hinton, Geoffrey E. 1991. Adaptive mixtures
of local experts. Neural computation,3(1):79–87.

Jiang Rui. 2023. Chinese Dialect Recognition Based on Transfer Learning. INTERSPEECH.

Kingma, Diederik P and Ba, Jimmy. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kwon, Yoohwan and Chung, Soo-Whan. 2023. MoLE: Mixture Of Language Experts For Multi-Lingual Auto-
matic Speech Recognition. ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP),pages 1–5.

Li, Bo and Sainath, Tara N and Sim, Khe Chai and Bacchiani, Michiel and Weinstein, Eugene and Nguyen, Patrick
and Chen, Zhifeng and Wu, Yanghui and Rao, Kanishka. 2018. Multi-dialect speech recognition with a single
sequence-to-sequence model. 2018 IEEE international conference on acoustics, speech and signal processing
(ICASSP),pages 4749–4753.

Li, Sheng and Lu, Xugang and Ding, Chenchen and Shen, Peng and Kawahara, Tatsuya and Kawai, Hisashi.
2019. Investigating Radical-Based End-to-End Speech Recognition Systems for Chinese Dialects and Japanese.
INTERSPEECH,pages 2200–2204.

Malik, Mishaim and Malik, Muhammad Kamran and Mehmood, Khawar and Makhdoom, Imran. 2021. Auto-
matic speech recognition: a survey. Multimedia Tools and Applications,80:9411-9457.

Park, Daniel S and Chan, William and Zhang, Yu and Chiu, Chung-Cheng and Zoph, Barret and Cubuk, Ekin D
and Le, Quoc V. 2017. Specaugment: A simple data augmentation method for automatic speech recognition.
arXiv preprint arXiv:1904.08779.

Peng, Yifan and Dalmia, Siddharth and Lane, Ian and Watanabe, Shinji. 2022. Branchformer: Parallel mlp-
attention architectures to capture local and global context for speech recognition and understanding. Interna-
tional Conference on Machine Learning,pages 17627–17643.

Ren, Zongze and Yang, Guofu and Xu, Shugong. 2019. Two-stage training for chinese dialect recognition. arXiv
preprint arXiv:1908.02284.

Riquelme, Carlos and Puigcerver, Joan and Mustafa, Basil and Neumann, Maxim and Jenatton, Rodolphe and
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