@inproceedings{tian-etal-2024-ji,
title = "基于思维链的跨语言多文档摘要生成技术研究(Cross-lingual Multi-document Summarization Based on Chain-of-Thought)",
author = "Tian, Qi and
Jianan, Yang and
Tiejun, Zhao and
Muyun, Yang",
editor = "Sun, Maosong and
Liang, Jiye and
Han, Xianpei and
Liu, Zhiyuan and
He, Yulan",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-1.9/",
pages = "110--133",
language = "zho",
abstract = "{\textquotedblleft}随着全球化的加速发展,跨语言信息的高效传递与理解变得尤为重要。传统的多文档摘要生成技术可以提升信息获取效率,然而往往忽视了跨语言场景下的特殊挑战。为了缓解这一问题,本文提出了跨语言多文档摘要生成任务。我们首先构建了一个全面的跨语言多文档摘要测试集作为评估基准,其次提出了一种基于思维链技术的跨语言多文档摘要生成方法,并对其进行了实验验证。在实验中,我们使用了几种典型的大语言模型,并通过人工评估和自动评估来验证我们的方法。结果表明,我们提出的基于思维链的方法在跨语言多文档摘要生成任务上取得了显著的性能提升,为解决语言障碍下的信息获取问题提供了有效的解决方案。{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tian-etal-2024-ji">
<titleInfo>
<title>基于思维链的跨语言多文档摘要生成技术研究(Cross-lingual Multi-document Summarization Based on Chain-of-Thought)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="family">Tian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Jianan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhao</namePart>
<namePart type="family">Tiejun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Muyun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiye</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“随着全球化的加速发展,跨语言信息的高效传递与理解变得尤为重要。传统的多文档摘要生成技术可以提升信息获取效率,然而往往忽视了跨语言场景下的特殊挑战。为了缓解这一问题,本文提出了跨语言多文档摘要生成任务。我们首先构建了一个全面的跨语言多文档摘要测试集作为评估基准,其次提出了一种基于思维链技术的跨语言多文档摘要生成方法,并对其进行了实验验证。在实验中,我们使用了几种典型的大语言模型,并通过人工评估和自动评估来验证我们的方法。结果表明,我们提出的基于思维链的方法在跨语言多文档摘要生成任务上取得了显著的性能提升,为解决语言障碍下的信息获取问题提供了有效的解决方案。”</abstract>
<identifier type="citekey">tian-etal-2024-ji</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-1.9/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>110</start>
<end>133</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 基于思维链的跨语言多文档摘要生成技术研究(Cross-lingual Multi-document Summarization Based on Chain-of-Thought)
%A Tian, Qi
%A Jianan, Yang
%A Tiejun, Zhao
%A Muyun, Yang
%Y Sun, Maosong
%Y Liang, Jiye
%Y Han, Xianpei
%Y Liu, Zhiyuan
%Y He, Yulan
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G zho
%F tian-etal-2024-ji
%X “随着全球化的加速发展,跨语言信息的高效传递与理解变得尤为重要。传统的多文档摘要生成技术可以提升信息获取效率,然而往往忽视了跨语言场景下的特殊挑战。为了缓解这一问题,本文提出了跨语言多文档摘要生成任务。我们首先构建了一个全面的跨语言多文档摘要测试集作为评估基准,其次提出了一种基于思维链技术的跨语言多文档摘要生成方法,并对其进行了实验验证。在实验中,我们使用了几种典型的大语言模型,并通过人工评估和自动评估来验证我们的方法。结果表明,我们提出的基于思维链的方法在跨语言多文档摘要生成任务上取得了显著的性能提升,为解决语言障碍下的信息获取问题提供了有效的解决方案。”
%U https://aclanthology.org/2024.ccl-1.9/
%P 110-133
Markdown (Informal)
[基于思维链的跨语言多文档摘要生成技术研究(Cross-lingual Multi-document Summarization Based on Chain-of-Thought)](https://aclanthology.org/2024.ccl-1.9/) (Tian et al., CCL 2024)
ACL