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Abstract

Knowledge graphs are used to alleviate the problems of data sparsity and cold starts in recom-
mendation systems. However, most existing approaches ignore the hierarchical structure of the
knowledge graph. In this paper, we propose a box embedding method for knowledge graph-
enhanced recommendation system. Specifically, the box embedding represents not only the in-
teraction between the user and the item, but also the head entity, the tail entity and the relation
between them in the knowledge graph. Then the interaction between the item and the corre-
sponding entity is calculated by the multi-task attention unit. Experimental results show that
our method provides a large improvement over previous models in terms of Area Under Curve
(AUC) and accuracy in publicly available recommendation datasets with three different domains.

1 Introduction

Recommendation systems have been proposed to solve the information explosion problem and to im-
prove the user experience in various applications. Early recommendation systems were mainly based
on collaborative filtering algorithms. These algorithms build user-item interaction matrices and per-
form similarity calculations to obtain final recommendations. However, collaborative filtering-based
approaches encounter data sparsity and cold-start problems in practical applications.

To address these problems, some researchers have proposed recommendation methods that use Knowl-
edge Graphs (KGs) as auxiliary information to improve the performance of recommendation tasks. Since
KGs contain rich semantic relationships between entities corresponding to user-related items, the recom-
mended items can take advantage of interactions with entities in the KG. Previous knowledge graph
enhanced recommendation methods mainly used multiple modules to learn the representation of knowl-
edge graph and recommendation task independently. For example, CKE (Zhang et al., 2016) used the
TransR to encode the knowledge graph, while extracted the text and image features of the recommenda-
tion task through another self-encoding structure. Recently, several researchers have proposed methods
for learning entities and items using multi-task learning. The core idea of such methods trained feature
interaction layers jointly to connect the recommendation task and the knowledge graph-related task. For
example, MKR (Wang et al., 2019) used cross units for training the knowledge graph embedding task
and recommendation task. But the units were computed by matrix multiplication. This lead to the insuf-
ficient learning about the feature. In addition, few existing methods can model the semantic hierarchical
structure relationship between recommendation data and the knowledge graph.

To address above shortcomings, we proposed BoxMAKR, a box embedding for knowledge graph-
enhanced recommendation. Specifically, our model utilizes the attention mechanism to learn higher-
order interaction features between items and entities more efficiently, and then embeds semantic hier-
archical relationships into entities, users and items. We conduct experiments on three recommendation
datasets, and the results show that BoxMAKR proposed in this paper achieves a large improvement
compared with advanced models such as MKR.
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2 Related Work

Knowledge graph enhanced recommendation systems. The recommendation systems can provide
users with interesting content based on their historical information. Early recommendation algorithms
include collaborative filtering (Hu et al., 2008; Wang et al., 2020; Liu and Wang, 2022; Jiang et al.,
2022), factorization machines (Rendle, 2010), and matrix factorization (Zhang et al., 2006). These
algorithms basically used the historical interaction data to calculate the similarity between each user
and item. Recently, some methods proposed more efficient mechanisms to learn the representation of
users and items. However, these methods still suffered from data sparsity and cold start problems. For
example, DNNRec (Kiran et al., 2020) integrated side information about users and items into a deep
neural network to alleviate the cold start problem. DHMR (Khan et al., 2021) proposed higher-order
non-linear latent feature to learn interactions from reviews and metadata information. But learning the
lower-order feature interactions of users and items were separately.

Besides user reviews information, knowledge graphs also can be considered as an additional informa-
tion source. This kind of task is called knowledge graph enhanced recommendation system. They are
usually contain two subtasks: knowledge graph embedding and the recommendation task. To integrate
the two tasks more effectively, more and more researchers focused on multi-task learning. For instance,
MKR (Wang et al., 2019) designed an interaction unit to share the features between items and entities
and trained jointly. Ripp-MKR (Wang et al., 2021) used the core idea of RippNet (Wang et al., 2018) to
combine the knowledge graph with historical user interaction to represent user features based on MKR.
TransMKR (Hu et al., 2022) improved the knowledge graph embedding module of MKR with TransR,
which enhanced the representation capability of knowledge graph embedding.

Geometric embedding. The semantic hierarchical structure relationship of data explicitly modeled
in the embedding space is very useful for solving natural language processing tasks. However, mod-
elling the structure of word in the Euclidean space requires large embedding dimension and additional
constraints. These constrain increased the computational complexity of the model. Therefore, some re-
searchers proposed non-Euclidean embedding methods. For example, POE (Lai and Hockenmaier, 2017)
was proposed to learn the sequential mapping of objects based on the semantic hierarchical structure in-
stead of the traditional distance relationship. Its core idea is to model the objects using the partial order
in the semantic hierarchical structure. Reference (Nickel and Kiela, 2017; Maximillian and Kiela, 2018;
Liang et al., 2024) modeled objects’ semantic hierarchical structure by similarity between the concepts in
hyperbolic space. Box embeddings (Onoe et al., 2021; Patel and Sankar, 2020; Vilnis et al., 2018) used
hyper-rectangles(box) to represent semantic hierarchical structure between objects as explicit conditional
probabilities.

3 Problem Formula

In the recommendation task, there exists a user set U = {u1, u2, ..., um}, an item set V =
{v1, v2, ..., vn}, and a user-item interaction matrix Y ∈ Rm×n, where yuv ∈ {0, 1}. This user-item
matrix represents whether an interaction exists between user um and item vn, which is defined by users’
feedbacks. In the matrix Y , yuv = 1 represents the user u engaged with item v, otherwise yuv = 0.
These feedbacks include implicit users’ click, watching, browsing. Furthermore, a knowledge graph G
can be composed of many triples (h, r, t). Where h denotes the head entity, t denotes the tail entity, and r
denotes the relationship between them. In the knowledge graph each triple is associated with the itemsv.
Also, the item v ∈ V may be related to one or more entities in the knowledge graph.

Thus, the knowledge graph enhanced recommendation task can be formulated as follows: given a user
set U , an item set V , a user-item interaction matrix Y and a knowledge graph G, the model will predict
the ŷuv which means the user u is interested in item v.
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Figure 1: The architecture of BoxMAKR model.

4 Method

4.1 Model Overview
BoxMAKR consists of three parts: multi-task embedding attention units, recommendation module, and
knowledge graph embedding module. The architecture of BoxMAKR is shown in Figure 1.

• The multi-task embedding attention units are implemented based on the attention mechanism for
modeling the higher-order interaction features between items in the recommendation module and
entities in the knowledge graph embedding module.

• The inputs of the recommendation module are users and items. Firstly, user and item embeddings
are learned by multi-layer feedforward neural networks and multi-task embedding attention units.
Then the user and item are learned by box embeddings. Finally, the prediction probabilities of users
for items are output using condition probability of box embeddings.

• The knowledge graph embedding module has a similar network structure as the recommendation
module. The relation and entity embeddings learned by multi-layer feedforward neural networks
and multi-task embedding attention units. Then the head and tail entities are learned by box em-
beddings. Finally, the prediction scores of triples are output using condition probability of box
embeddings.

4.2 Box Embeddings for Semantic Hierarchical Structure

Figure 2: The box embeddings.

Box embeddings represent each object as a hyper-rectangle
B (x) in the d dimensional embedding space, each hyper-
rectangle is called a box. The box is represented in each
dimension by a pair of vectors ⟨xm,xM ⟩. In each dimen-
sion i ∈ {1, 2, ..., d} there is xm,i < xM,i, where xm,i and
xM,i represent the vector values of the bottom-left and upper-
right positions of the box, respectively, i.e., the minimum and
maximum values of the box in the embedding space. The box
embeddings are shown in Figure 2. If the box embeddings
space ΩB ⊆ Rd is normalized to volume 1, then the box can
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be interpreted as a probability distribution of binary random variables. In this case, the marginal proba-
bilities of the objects are represented as the volume of the corresponding box:

V [B (x)] =

d∏
i=1

(xM,i − xm,i) (1)

After that, in order to calculated the relation between different boxes, we introduce the joint and
conditional probability. The joint probability of two boxes can be defined as the volume of intersection,
since intersection process between two boxes will yield another box. The joint probability can be defined
as:

V [B(x) ∩B(y)] =
d∏

i=1

max(min(xM,i, yM,i)−max(xm,i, ym,i), 0) (2)

The conditional probabilities between two boxes can be further calculated with marginal probabilities
and joint probabilities:

P (x|y) = V [B (x) ∩B (y)]

V [B (y)]
(3)

Optimization. The basic box embeddings model suffers from gradient loss during gradient descent-
based optimization, which causes the model to fail to learn the embedding representation of objects. The
Gumbel distribution is commonly used in probability theory. It models the distribution of the maximum
or minimum values of the sample. According to Dasgupta et al. (Dasgupta et al., 2020), they demon-
strated the the minimum and maximum values of the box can be represented as MaxGumbel distribution
and the MinGumbel distribution with variance β, respectively, where β is the location parameters.

For the two boxes B (x) and B (y) represented in ΩH using Gumbel box embeddings, the intersection
box B (z) can also be represented by the Gumbel distribution, where the two vector parameters zm and
zM of B (z) are calculated as:

zm = β ln
(
e

xm
β + e

ym
β

)
, zM = −β ln

(
e
− xM

β + e
− yM

β

)
(4)

The volume V [B (x)] of the box B(x) based on the Gumbel distribution representation can be ap-
proximated as a softplus function. The approximated box volume is calculated as follows.

V [B (x)] ==
d∏

i=1

softplus

(
xM,i − xm,i

β
− 2γ

)
(5)

4.3 Multi-task Embedding Attention Unit

Figure 3: Multi-task embedding atten-
tion unit.

Items in the recommendation system usually correspond to
many entities. The knowledge graph enhanced recommenda-
tion method will establish interaction relations between the
items and the corresponding entities. The interaction rela-
tions will be established by interaction units. The multi-task
embedding attention unit introduces the attention mechanism
in the interaction process between items and entities to effec-
tively share the high order interaction feature. The structure
of this unit is shown in Figure 3.

The semantic hierarchical structure of word can be mod-
eled by conditional probabilities of box embeddings. For ex-
ample, there is an edge from ”Dog” to ”Mammal” in the WordNet. We can convert this edge into the
conditional probability of a binary random variable P (Mammal|Dog) = 1, then get the box embed-
dings of each word and their relationship, as shown in Figure 4.
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Figure 4: The box embeddings model semantic hi-
erarchical structure.

This unit input item embeddings v ∈ Rd and
entity embeddings e ∈ Rd, performs a matrix
product operation to construct the feature matrix
Cve and Cev between the items and entities:

Cve = v⊤ ⊗ e, Cev = e⊤ ⊗ v (6)

where Cve, Cev ∈ Rd×d can explicitly model
all interaction features between items and enti-
ties. However, the matrix product calculation
made features between item and entity over fused, which result in reducing feature weight of the item in
the recommendation task. Thus, the feature representations of items and entities are further enriched by
four parameter matrices Wv, Wve, We, Wev. Then preliminary interative feature vc and ec ∈ Rd of
item embeddings and entity embeddings can by obtained by a linear layer:

vc = l
(
Wv

(
v⊤v

)
◦WveCve

)
, ec = l

(
We

(
e⊤e

)
◦WevCev

)
(7)

Where ◦ denotes Hadamard product operation, Wv, We ∈ Rd×d are the parameter matrix of item em-
beddings v and entity embeddings e, Wve, Wev ∈ Rd×d are the parameter matrix of feature matrixCve

and Cev, and l (·) denote linear neural network layer.
To further learn the feature weights of item and entity embeddings, the attention mechanism is to

model the higher-order interaction features based on the preliminary interaction feature representations.
Since attention calculations are involved between the two tasks, it is necessary to define the query q and
the key k for item embeddings and entity embeddings, respectively:

qv = Wqvc ,kv = Wkvc , qe = Wqec ,ke = Wkec (8)

Where Wq ,Wk ∈ Rd×d are the parameters of the query and key. Then the correlation scores s
between them are calculated by scaling the dot product. Finally, the correlation scores s are normalized
using the softmax function to obtain the attention weight distribution α:

αve = softmax (sve) =
exp (sve)∑
v,e exp (sve)

, sve =
qv

⊤ke√
d

(9)

The final item v and entity embedding e are obtained from the following equations:

v = αvevc, e = αevec (10)

where αev is calculated in the same way with αve. After learning from multi-task embedding attention
units, the item embedding and entity embedding can effectively capture the higher-order interaction fea-
tures between items and entities. After the interaction, the learned item embedding and entity embedding
are more suitable for the process of their individual task.

4.4 Recommendation Module

The recommendation module is used to learn the box embeddings representation of users and items.
The module is divided into two parts: the low-level encoding and the box embeddings. Its inputs are
the initial embeddings u of users u and v of the items v. The user embeddings u are first encoded
by the feedforward neural network(FNN) with layer number of L . The encoded user embeddings are
represented as uL. The item embeddings v are encoded with the corresponding entity embeddings e
in the knowledge graph by L-layer multi-task embedding attention unit (MEAU), and the encoded item
embeddings are represented as vL.

uL = FNN (· · ·FNN (u)) (11)
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vL = Ev∼e (MEAU (· · ·MEAU (v, e) [v])) (12)

where Ev∼e represents the mapping process between item v and entity e. After the low-level encoding,
the user and item need to be modeled as box embeddings. For the box, its geometric transformation is
mainly translation and scale. Therefore, we further convert the user and item embedding into two vectors.
They are the center vector c ∈ Rd and the bias vector o ∈ Rd . The center vector controls the position
of the box, while the bias vector controlls the size of the box. Therefore, the user box B(u) and the item
box B(v) are represented as:

B (u) = [(um,uM )] = [σ (cu − softplus (ou)) , σ (cu + softplus (ou))] (13)

B (v) = [(vm,vM )] = [σ (cv − softplus (ov)) , σ (cv + softplus (ov))] (14)

Finally, based on the conditional probability of the box, the probability of user u is interested in the
item v is predicted as ŷuv:

ŷuv = P ( B (v) |B (u)) =
V [B (v) ∩B (u)]

V (B (u))
(15)

4.5 Knowledge Graph Embedding Module
The knowledge graph embedding module is used to learn the box embeddings representation of entities
and relations in the knowledge graph embedding task. Its network structure is similar to the recommen-
dation module. Its inputs are the initial feature embeddings h of head entities h, r of relations r, and t of
tail entities t in the knowledge graph triples (h, r, t). The relation embedding r is first encoded using an
L-layer FNN, and the encoded relation embeddings are represented as rL. The head entity embeddings
h are encoded with the corresponding item embeddings v in the recommendation by the L-layer MEAU,
and the encoded head entity embeddings are represented as hL.

rL = FNN (· · ·FNN (r)) (16)

hL = Eh∼v (MEAU (· · ·MEAU (h,v) [h])) (17)

where Eh∼v represents the mapping process between the head entity h and the item v. After complet-
ing the lower-level encoding of relations and entities, the box embeddings of relations and entities need
to be modeled. Where the box representation of entities is similar to the box representation of users and
items in the recommendation module. But in the knowledge graph, multiple types of relationships often
exist between entities, the embedding of the same entity under different relationships should be different.
Therefore, we further represent the relation r between entities as two transformation vectors, which are
the center transformation vector cr ∈ Rd and the bias transformation vector or ∈ Rd controlling the
position and size of the entity box, respectively, and the transformation vectors of different relations can
transform the position and size of entity box in different ways. For the head entity box B(h) and the tail
entity box B(t), their center vectors and bias vectors under the relation r are represented as follows:

ch (r) = ch + crh , oh (r) = oh ◦ or
h (18)

ct (r) = ct + crt , ot (r) = ot ◦ or
t (19)

where ◦ is the Hadamard product, ch (r) , oh (r) and ct (r) , ot (r) represent the center vector and
bias vector of the head entity box B(h) and the tail entity box B(t) after the transformation of the relation
r, respectively. Based on the above center vectors and bias vectors, the box embeddings of B(h) and
B(t) under the relation r are given as Trh (B (h)) and Trt (B (t)).

Trh (B (h)) = [σ (ch (r)− softplus (oh (r))) , σ (ch (r) + softplus (oh (r))) ] (20)

Trt (B (t)) = [σ (ct (r)− softplus (ot (r))) , σ (ct (r) + softplus (ot (r))) ] (21)

Finally, based on the geometric properties of the box, the score fr (h, t) of the triple (h, r, t) is pre-
dicted:

fr (h, t) =
V [Trh (B (h)) ∩ Trt (B (t))]

V [Trt (B (t))]
(22)
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4.6 Learning
The BoxMAKR model is jointly trained by the recommendation task and the knowledge graph embed-
ding task. The learning objective L includes three parts: the recommendation task loss function LREC ,
the knowledge graph embedding task loss function LKGC , and the regular term L2. The equation is as
follows:

L = LREC + LKGC + L2

=
∑

u∈U,v∈V
g (ŷuv, yuv)− λ1

 ∑
(h,r,t)∈G

fr (h, t)−
∑

(h′,r,t′)/∈S

fr
(
h′, t′

)+ λ2 ∥W ∥22
(23)

where g (·) is the cross-entropy loss function, the learning objective of the recommendation task is to
make the prediction probability ŷuv close to the real probability yuv. In Equation 23, (h′, r, t′) is the
negative sample of the triples. The learning objective of the knowledge graph embedding task is to
improve the prediction score fr (h, t) , while reducing the prediction score fr (h

′, t′) of the negative
samples. Finally, the L2 regular term is to avoid model overfitting. lambda1 and lambda2 are the
hyperparameters used to balance the knowledge graph embedding task and the regular term.

Datasets Users Items Interactions KG triples Sparsity
MovieLens 1M 6036 2347 753772 20195 94.68%
Book-Crossing 17860 14910 139746 19793 99.95%
Last.FM 1872 3846 42346 15518 99.41%

Table 1: Basic statistics for the three datasets.

5 Experiments

5.1 Datasets
In our experiments, we used three publicly available datasets containing explicit user feedback.
MovieLens-1M is a movie recommendation benchmark dataset which described the users’ preferences
for movies. It includes 6036 users for 2347 movies with 753,772 ratings. Its data sparsity is 94.68%.
Book-Crossing is crawled from the Book-Crossing community, which described users’ grades for book.
In total, it includes 139,746 ratings from 17,860 users on 14,910 book items. Its data sparsity is 99.95%.
Last.FM is from the Last.FM online music system, which described the listen records of users and music.
It includes a total number of 42,346 listening counts, which produced by 1,872 users about 3,846 songs.
Its data sparsity is 99.41%.

We divided the users feedback into positive and negative. The positive feedback of users to items is
denoted as “1”, while negative feedback is denoted as “0”. In MovieLens-1M, user ratings of 4 and 5
were selected as positive feedback. However, the other two datasets have a large data sparsity. We use
all user interactions on items in the dataset as positive feedback. After building the positive feedback, we
randomly sampled the same number of negative samples for each user with items that are not interaction.
Then, we further used the Microsoft Satori service to build the knowledge graph on the above datasets.
The statistics of the three datasets are shown in Table 1.

5.2 Baselines
To verify the validity of our model, we compare it with six classical baseline models. KTUP (Cao et
al., 2019) jointly learned the recommendation task and the knowledge graph complementation task. The
core idea of this method is introducing preference induction to model users’ preference features for items.
The bridge between the two tasks is the alignment of the recommended items with the corresponding en-
tities. The user preferences are related to the relations between the entities. RippleNet (Wang et al.,
2018) introduced the concept of preference propagation to optimize user features by sampling from the
knowledge graph in an aggregated way. Eventually, user preferences from historical interaction informa-
tion are propagated over paths in knowledge graph to realize the joint training of knowledge graph and
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Datasets Dim Layer Lr1 Lr2 Lr3
MovieLens-1M 32 4 3e-3 1e-3 0.5
Book-Crossing 16 3 5e-4 2e-5 0.1
Last.FM 16 2 3e-3 2e-4 0.1

Table 2: Hyperparameters settings for the three datasets.

recommendation. MKR (Wang et al., 2019) is an unified framework for knowledge graph enhanced rec-
ommendation with multi-task learning. The framework includes recommendation and knowledge graph
embedding module, which are connected by cross&compress unit. During training, they used alternative
learning strategy to train recommendation and knowledge graph embedding task. Ripp-MKR (Wang et
al., 2021) imporved MKR model with RippleNet. In their work, Ripp-MKR combined the knowledge
graph with the user history interaction information to represent the user’s features. TransMKR (Hu et
al., 2022) improved the knowledge graph embedding module of MKR by using the TransR algorithm.
TransR can enhance the representation capability of embedding knowledge graph.

5.3 Experiments setup

In the experiments, the hyperparameters of the baseline models are initialized using the data from the
original work, and the optimal parameter is selected by fine-tuning in our experiments. The hyperparam-
eter settings of BoxMAKR model on different datasets are shown in the table 2, where dim represents
the embedding dimension, layer represents the number of network layers, lr1 and lr2 are the learning
rates of the recommendation task and the knowledge graph embedding task, respectively. lambda1 is
the weight parameter of the recommendation task. The other hyperparameters are fixed in all datasets.
The weight λ2 of the regular term is 1e-6. The scale parameter β of the Gumbel distribution in the box
embeddings is 0.01. The training interval t of the knowledge graph embedding task is 3.

The datasets are divided into the training, validation and test set with the ratio of 6:2:2. Each experi-
ment is conducted three times, and the average results are reported to validate the robustness of the model.
We compared all methods in two typical task. Click-through rate (CTR) prediction. The trained model is
applied to the test set to get click-through rate prediction scores, and the performance is evaluated using
two evaluation metrics, AUC and ACC. TOP-K recommendation. The trained model is applied to the
test set, and the K recommendation items with the highest predicted click probability are selected for
each user. The performance is evaluated using two evaluation metrics, Recall@K and F1@K.

Model MovieLens-1M Book-Crossing Last.FM
AUC ACC AUC ACC AUC ACC

KTUP 0.822 0.761 0.689 0.643 0.735 0.667
RippleNet 0.920 0.842 0.729 0.662 0.768 0.691
MKR 0.917 0.843 0.734 0.704 0.799 0.752
Ripp-MKR 0.922 0.845 0.740 0.712 0.799 0.756
TransMKR 0.916 0.838 0.737 0.706 0.797 0.753
BoxMAKR(ours) 0.926 0.855 0.749 0.712 0.804 0.752

Table 3: The results of AUC and Accuracy in CTR prediction.

6 Results

6.1 Overall results

The experimental results of the CTR prediction and TOP-K recommendation are showed in table 3. The
comparison between different models on Top-K in three datasets are shown in Figure 5, Figure 6 and
Figure 7, respectively.

From Table 3, we observed that KTUP performs the worst in the three datasets, especially in the dense
MovieLens-1M where the performance is much lower than the other models. This demonstrated that
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the preference induction introduced by KTUP cannot build effective interactions between users and the
knowledge graph which is not suitable for complex recommendation scenarios.

RippleNet has better performance in the MovieLens-1M because the user-item interaction information
is dense and preference propagation can more accurately capture user interests. However, RippleNet does
not perform as well as MKR in the Book-Crossing and Last.FM when the data is sparse.

In Table 3, Ripp-MKR and TransMKR are used the same framework of MKR. Ripp-MKR combined
the advantages of RippleNet and MKR, has better performance on all datasets. It shows that introducing
user preferences under a multi-task learning strategy can effectively integrate the knowledge graph em-
bedding and recommendation task. TransMKR has no significant improvement in overall performance
compared with MKR. This is because TransMKR only improves the embedding method of the knowl-
edge graph embedding module without adapting the recommendation module and interaction unit. It
leads to the recommendation task not being able to effectively obtain the feature representation in the
knowledge graph embedding task.

Compared with other baselines, the BoxMAKR improved the AUC scores by 0.9%, 1.5%, and 0.5%
on the three datasets, respectively. Meanwhile, the ACC scores improve by 1.2% and 0.8% on the
MovieLens-1M and Book-Crossing, respectively. But not on the Last.FM, which is probably because
the amount of data is too small to fully train the network model. BoxMAKR outperforms the optimal
result on the three datasets.

Figure 5: TOP-K recommendation results on the MovieLens-1M.

Figure 6: TOP-K recommendation results on the Book-Crossing.

Figure 7: TOP-K recommendation results on the Last.FM.
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6.2 Ablation
We further demonstrated the effectiveness of box embeddings and multi-task embedding attention unit
through ablation experiments.

In Table 4, BoxMAKR(w/o Att) and BoxMAKR(w/o box) are models of BoxMAKR using MKR’s
interaction unit and prediction network, respectively. Compared with BoxMAKR, BoxMAKR(w/o Att)
and BoxMAKR(w/o box) decreased the AUC metrics by 0.5% and 0.7% on average and the ACC
metrics by 0.6% and 0.8% on average in the three datasets. The results of the ablation experiments
show that introducing attention mechanisms in the interaction units can share the higher-order interaction
features between items and entities more effectively. It can also be seen that box embeddings play a
very important role in BoxMAKR because box embeddings can provide more semantic information for
recommendation tasks and knowledge graph embedding tasks by modeling the semantic hierarchical
structural relationships between data.

Model MovieLens-1M Book-Crossing Last.FM
AUC ACC AUC ACC AUC ACC

BoxMAKR(w/o Att) 0.922 0.846 0.745 0.707 0.799 0.748
BoxMAKR(w/o Box) 0.920 0.842 0.742 0.704 0.796 0.749
BoxMAKR 0.926 0.855 0.749 0.712 0.804 0.752

Table 4: The ablation results of AUC and Accuracy in CTR prediction.

7 Conclusions

This paper proposed a box embedding method for knowledge graph enhanced recommendation system.
Based on the MKR model, we use box embeddings to represent users, items and entities. This embed-
dings allow us to model the semantic hierarchical structure relationships between those objects. Further,
the multi-task attention method learned the higher-order interactions between items and corresponding
entities. We conduct extensive experiments in three recommendation datasets. The results showed that
our method is better than the original model MKR, and have great advantages over other baseline models.
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