@inproceedings{jingshen-etal-2024-readability,
title = "Readability-guided Idiom-aware Sentence Simplification ({RISS}) for {C}hinese",
author = "Jingshen, Zhang and
Xinglu, Chen and
Xinying, Qiu and
Zhimin, Wang and
Wenhe, Feng",
editor = "Sun, Maosong and
Liang, Jiye and
Han, Xianpei and
Liu, Zhiyuan and
He, Yulan",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-1.92/",
pages = "1183--1200",
language = "eng",
abstract = "{\textquotedblleft}Chinese sentence simplification faces challenges due to the lack of large-scale labeledparallel corpora and the prevalence of idioms. To address these challenges, we pro-pose Readability-guided Idiom-aware Sentence Simplification (RISS), a novel frameworkthat combines data augmentation techniques. RISS introduces two key components: (1)Readability-guided Paraphrase Selection (RPS), a method for mining high-quality sen-tence pairs, and (2) Idiom-aware Simplification (IAS), a model that enhances the compre-hension and simplification of idiomatic expressions. By integrating RPS and IAS usingmulti-stage and multi-task learning strategies, RISS outperforms previous state-of-the-artmethods on two Chinese sentence simplification datasets. Furthermore, RISS achievesadditional improvements when fine-tuned on a small labeled dataset. Our approachdemonstrates the potential for more effective and accessible Chinese text simplification.{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jingshen-etal-2024-readability">
<titleInfo>
<title>Readability-guided Idiom-aware Sentence Simplification (RISS) for Chinese</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhang</namePart>
<namePart type="family">Jingshen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Xinglu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qiu</namePart>
<namePart type="family">Xinying</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wang</namePart>
<namePart type="family">Zhimin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Feng</namePart>
<namePart type="family">Wenhe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiye</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“Chinese sentence simplification faces challenges due to the lack of large-scale labeledparallel corpora and the prevalence of idioms. To address these challenges, we pro-pose Readability-guided Idiom-aware Sentence Simplification (RISS), a novel frameworkthat combines data augmentation techniques. RISS introduces two key components: (1)Readability-guided Paraphrase Selection (RPS), a method for mining high-quality sen-tence pairs, and (2) Idiom-aware Simplification (IAS), a model that enhances the compre-hension and simplification of idiomatic expressions. By integrating RPS and IAS usingmulti-stage and multi-task learning strategies, RISS outperforms previous state-of-the-artmethods on two Chinese sentence simplification datasets. Furthermore, RISS achievesadditional improvements when fine-tuned on a small labeled dataset. Our approachdemonstrates the potential for more effective and accessible Chinese text simplification.”</abstract>
<identifier type="citekey">jingshen-etal-2024-readability</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-1.92/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>1183</start>
<end>1200</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Readability-guided Idiom-aware Sentence Simplification (RISS) for Chinese
%A Jingshen, Zhang
%A Xinglu, Chen
%A Xinying, Qiu
%A Zhimin, Wang
%A Wenhe, Feng
%Y Sun, Maosong
%Y Liang, Jiye
%Y Han, Xianpei
%Y Liu, Zhiyuan
%Y He, Yulan
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G eng
%F jingshen-etal-2024-readability
%X “Chinese sentence simplification faces challenges due to the lack of large-scale labeledparallel corpora and the prevalence of idioms. To address these challenges, we pro-pose Readability-guided Idiom-aware Sentence Simplification (RISS), a novel frameworkthat combines data augmentation techniques. RISS introduces two key components: (1)Readability-guided Paraphrase Selection (RPS), a method for mining high-quality sen-tence pairs, and (2) Idiom-aware Simplification (IAS), a model that enhances the compre-hension and simplification of idiomatic expressions. By integrating RPS and IAS usingmulti-stage and multi-task learning strategies, RISS outperforms previous state-of-the-artmethods on two Chinese sentence simplification datasets. Furthermore, RISS achievesadditional improvements when fine-tuned on a small labeled dataset. Our approachdemonstrates the potential for more effective and accessible Chinese text simplification.”
%U https://aclanthology.org/2024.ccl-1.92/
%P 1183-1200
Markdown (Informal)
[Readability-guided Idiom-aware Sentence Simplification (RISS) for Chinese](https://aclanthology.org/2024.ccl-1.92/) (Jingshen et al., CCL 2024)
ACL