@inproceedings{liang-etal-2024-da,
title = "大语言模型时代的信息检索综述(A Review of Information Retrieval in the Era of Large Language Models)",
author = "Liang, Pang and
Jingcheng, Deng and
Jia, Gu and
Huawei, Shen and
Xueqi, Cheng",
editor = "Zhao, Xin",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 2: Frontier Forum)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-2.6/",
pages = "98--119",
language = "zho",
abstract = "{\textquotedblleft}以大语言模型为代表的生成式人工智能迅猛发展,标志着人工智能从判别时代向生成时代的转变。这一进步极大地推动了信息检索技术的发展,本文对大语言模型对信息检索领域的影响进行了深入的综述。从性能改进到模式颠覆,逐步展开论述大语言模型对信息检索领域的影响。针对传统信息检索流程,大语言模型凭借强大的语义理解和建模能力,显著增强索引、检索和排序等信息检索模块的性能。同时,文章也探讨了大语言模型可能取代传统信息检索的趋势,并催生了新的信息获取方式,或将是新一次信息时代的寒武纪。此外,大语言模型对内容生态的深远影响也值得关注。{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liang-etal-2024-da">
<titleInfo>
<title>大语言模型时代的信息检索综述(A Review of Information Retrieval in the Era of Large Language Models)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pang</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deng</namePart>
<namePart type="family">Jingcheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gu</namePart>
<namePart type="family">Jia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shen</namePart>
<namePart type="family">Huawei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cheng</namePart>
<namePart type="family">Xueqi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 2: Frontier Forum)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xin</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“以大语言模型为代表的生成式人工智能迅猛发展,标志着人工智能从判别时代向生成时代的转变。这一进步极大地推动了信息检索技术的发展,本文对大语言模型对信息检索领域的影响进行了深入的综述。从性能改进到模式颠覆,逐步展开论述大语言模型对信息检索领域的影响。针对传统信息检索流程,大语言模型凭借强大的语义理解和建模能力,显著增强索引、检索和排序等信息检索模块的性能。同时,文章也探讨了大语言模型可能取代传统信息检索的趋势,并催生了新的信息获取方式,或将是新一次信息时代的寒武纪。此外,大语言模型对内容生态的深远影响也值得关注。”</abstract>
<identifier type="citekey">liang-etal-2024-da</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-2.6/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>98</start>
<end>119</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 大语言模型时代的信息检索综述(A Review of Information Retrieval in the Era of Large Language Models)
%A Liang, Pang
%A Jingcheng, Deng
%A Jia, Gu
%A Huawei, Shen
%A Xueqi, Cheng
%Y Zhao, Xin
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 2: Frontier Forum)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G zho
%F liang-etal-2024-da
%X “以大语言模型为代表的生成式人工智能迅猛发展,标志着人工智能从判别时代向生成时代的转变。这一进步极大地推动了信息检索技术的发展,本文对大语言模型对信息检索领域的影响进行了深入的综述。从性能改进到模式颠覆,逐步展开论述大语言模型对信息检索领域的影响。针对传统信息检索流程,大语言模型凭借强大的语义理解和建模能力,显著增强索引、检索和排序等信息检索模块的性能。同时,文章也探讨了大语言模型可能取代传统信息检索的趋势,并催生了新的信息获取方式,或将是新一次信息时代的寒武纪。此外,大语言模型对内容生态的深远影响也值得关注。”
%U https://aclanthology.org/2024.ccl-2.6/
%P 98-119
Markdown (Informal)
[大语言模型时代的信息检索综述(A Review of Information Retrieval in the Era of Large Language Models)](https://aclanthology.org/2024.ccl-2.6/) (Liang et al., CCL 2024)
ACL