@inproceedings{shiquan-etal-2024-ji,
title = "基于上下文学习与思维链策略的中文空间语义理解",
author = "Shiquan, Wang and
Weiwei, Fu and
Ruiyu, Fang and
Mengxiang, Li and
Zhongjiang, He and
Yongxiang, Li and
Shuangyong, Song",
editor = "Lin, Hongfei and
Tan, Hongye and
Li, Bin",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-3.12/",
pages = "106--112",
language = "zho",
abstract = "{\textquotedblleft}本技术报告详细介绍了我们团队参加第四届中文空间语义理解评测(SpaCE2024)的方法和成果。SpaCE2024旨在全面测试机器对中文空间语义的理解能力,包括空间信息实体识别、空间信息实体识别、空间信息异常识别、空间方位信息推理和空间异形同义识别五个不同的任务。我们团队采用精心设计的prompt并结合微调的方式激发大语言模型的空间语义理解能力,构建了一个高效的空间语义理解系统。在最终的评估中,我们在空间信息实体识别题目中准确率为0.8947,在空间信息实体识别题目中准确率为0.9364,在空间信息异常识别题目中准确率为0.8480,在空间方位信息推理题目中准确率为0.3471,在空间异形同义识别题目中准确率为0.5631,测试集综合准确率为0.6024,排名第一。{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shiquan-etal-2024-ji">
<titleInfo>
<title>基于上下文学习与思维链策略的中文空间语义理解</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wang</namePart>
<namePart type="family">Shiquan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fu</namePart>
<namePart type="family">Weiwei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fang</namePart>
<namePart type="family">Ruiyu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Li</namePart>
<namePart type="family">Mengxiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">He</namePart>
<namePart type="family">Zhongjiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Li</namePart>
<namePart type="family">Yongxiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Song</namePart>
<namePart type="family">Shuangyong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hongfei</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongye</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“本技术报告详细介绍了我们团队参加第四届中文空间语义理解评测(SpaCE2024)的方法和成果。SpaCE2024旨在全面测试机器对中文空间语义的理解能力,包括空间信息实体识别、空间信息实体识别、空间信息异常识别、空间方位信息推理和空间异形同义识别五个不同的任务。我们团队采用精心设计的prompt并结合微调的方式激发大语言模型的空间语义理解能力,构建了一个高效的空间语义理解系统。在最终的评估中,我们在空间信息实体识别题目中准确率为0.8947,在空间信息实体识别题目中准确率为0.9364,在空间信息异常识别题目中准确率为0.8480,在空间方位信息推理题目中准确率为0.3471,在空间异形同义识别题目中准确率为0.5631,测试集综合准确率为0.6024,排名第一。”</abstract>
<identifier type="citekey">shiquan-etal-2024-ji</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-3.12/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>106</start>
<end>112</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 基于上下文学习与思维链策略的中文空间语义理解
%A Shiquan, Wang
%A Weiwei, Fu
%A Ruiyu, Fang
%A Mengxiang, Li
%A Zhongjiang, He
%A Yongxiang, Li
%A Shuangyong, Song
%Y Lin, Hongfei
%Y Tan, Hongye
%Y Li, Bin
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G zho
%F shiquan-etal-2024-ji
%X “本技术报告详细介绍了我们团队参加第四届中文空间语义理解评测(SpaCE2024)的方法和成果。SpaCE2024旨在全面测试机器对中文空间语义的理解能力,包括空间信息实体识别、空间信息实体识别、空间信息异常识别、空间方位信息推理和空间异形同义识别五个不同的任务。我们团队采用精心设计的prompt并结合微调的方式激发大语言模型的空间语义理解能力,构建了一个高效的空间语义理解系统。在最终的评估中,我们在空间信息实体识别题目中准确率为0.8947,在空间信息实体识别题目中准确率为0.9364,在空间信息异常识别题目中准确率为0.8480,在空间方位信息推理题目中准确率为0.3471,在空间异形同义识别题目中准确率为0.5631,测试集综合准确率为0.6024,排名第一。”
%U https://aclanthology.org/2024.ccl-3.12/
%P 106-112
Markdown (Informal)
[基于上下文学习与思维链策略的中文空间语义理解](https://aclanthology.org/2024.ccl-3.12/) (Shiquan et al., CCL 2024)
ACL
- Wang Shiquan, Fu Weiwei, Fang Ruiyu, Li Mengxiang, He Zhongjiang, Li Yongxiang, and Song Shuangyong. 2024. 基于上下文学习与思维链策略的中文空间语义理解. In Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations), pages 106–112, Taiyuan, China. Chinese Information Processing Society of China.