@inproceedings{zihao-etal-2024-hun,
title = "混合 {L}o{RA} 专家的中文抽象语义表示解析框架",
author = "Zihao, Wu and
Hua, Yin and
Ziqian, Gao and
Jiajia, Zhang and
Yuelei, Ji and
Kuntian, Tang",
editor = "Lin, Hongfei and
Tan, Hongye and
Li, Bin",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-3.16/",
pages = "143--153",
language = "zho",
abstract = "{\textquotedblleft}本文介绍了我们在第二十三届中国计算语言学大会中文抽象语义表示解析评测任务中提交的参赛系统。抽象语义表示 (Abstract Meaning Representation,AMR) 使用有向无环图对句子进行建模,以语义概念作为节点,关系标签作为边,表示一个句子的语义。我们受到结合语法信息的 AMR 解析研究的启发,提出混合 LoRA(Low-Rank Adaption) 专家的 CAMR 解析框架,该框架包含一个由大型语言模型微调而来的基础 CAMR 解析器和 4 个句类专家和 1 个古汉语 LoRA 专家模型。最终,本文所提出的框架在三个评测数据集中均取得了最好的成绩。{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zihao-etal-2024-hun">
<titleInfo>
<title>混合 LoRA 专家的中文抽象语义表示解析框架</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wu</namePart>
<namePart type="family">Zihao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yin</namePart>
<namePart type="family">Hua</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gao</namePart>
<namePart type="family">Ziqian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhang</namePart>
<namePart type="family">Jiajia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ji</namePart>
<namePart type="family">Yuelei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tang</namePart>
<namePart type="family">Kuntian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hongfei</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongye</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“本文介绍了我们在第二十三届中国计算语言学大会中文抽象语义表示解析评测任务中提交的参赛系统。抽象语义表示 (Abstract Meaning Representation,AMR) 使用有向无环图对句子进行建模,以语义概念作为节点,关系标签作为边,表示一个句子的语义。我们受到结合语法信息的 AMR 解析研究的启发,提出混合 LoRA(Low-Rank Adaption) 专家的 CAMR 解析框架,该框架包含一个由大型语言模型微调而来的基础 CAMR 解析器和 4 个句类专家和 1 个古汉语 LoRA 专家模型。最终,本文所提出的框架在三个评测数据集中均取得了最好的成绩。”</abstract>
<identifier type="citekey">zihao-etal-2024-hun</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-3.16/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>143</start>
<end>153</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 混合 LoRA 专家的中文抽象语义表示解析框架
%A Zihao, Wu
%A Hua, Yin
%A Ziqian, Gao
%A Jiajia, Zhang
%A Yuelei, Ji
%A Kuntian, Tang
%Y Lin, Hongfei
%Y Tan, Hongye
%Y Li, Bin
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G zho
%F zihao-etal-2024-hun
%X “本文介绍了我们在第二十三届中国计算语言学大会中文抽象语义表示解析评测任务中提交的参赛系统。抽象语义表示 (Abstract Meaning Representation,AMR) 使用有向无环图对句子进行建模,以语义概念作为节点,关系标签作为边,表示一个句子的语义。我们受到结合语法信息的 AMR 解析研究的启发,提出混合 LoRA(Low-Rank Adaption) 专家的 CAMR 解析框架,该框架包含一个由大型语言模型微调而来的基础 CAMR 解析器和 4 个句类专家和 1 个古汉语 LoRA 专家模型。最终,本文所提出的框架在三个评测数据集中均取得了最好的成绩。”
%U https://aclanthology.org/2024.ccl-3.16/
%P 143-153
Markdown (Informal)
[混合 LoRA 专家的中文抽象语义表示解析框架](https://aclanthology.org/2024.ccl-3.16/) (Zihao et al., CCL 2024)
ACL
- Wu Zihao, Yin Hua, Gao Ziqian, Zhang Jiajia, Ji Yuelei, and Tang Kuntian. 2024. 混合 LoRA 专家的中文抽象语义表示解析框架. In Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations), pages 143–153, Taiyuan, China. Chinese Information Processing Society of China.