@inproceedings{weiwei-etal-2024-ji,
title = "基于大小模型结合与半监督自训练方法的古文事件抽取",
author = "Fu, Weiwei and
Wang, Shiquan and
Fang, Ruiyu and
Li, Mengxiang and
He, Zhongjiang and
Li, Yongxiang and
Song, Shuangyong",
editor = "Hongfei, Lin and
Hongye, Tan and
Bin, Li",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-3.19/",
pages = "172--177",
language = "zho",
abstract = "``本文描述了队伍{``}TeleAI{''}在CCL2024古文历史事件类型抽取评测任务(CHED2024)中提交的参赛系统。该任务旨在自动识别出古代文本中的事件触发词与事件类型,其中事件类型判别被分为粗粒度和细粒度的事件类型判别两部分。为了提高古文历史事件类型抽取的性能,我们结合了大模型和小模型,并采用了半监督自训练的方法。在最终的评估中,我们在触发词识别任务得分0.763,粗粒度事件类型判别任务得分0.842,细粒度事件类型判别任务得分0.779,综合得分0.791,在所有单项任务和综合评分上均排名第一。''"
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="weiwei-etal-2024-ji">
<titleInfo>
<title>基于大小模型结合与半监督自训练方法的古文事件抽取</title>
</titleInfo>
<name type="personal">
<namePart type="given">Weiwei</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shiquan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruiyu</namePart>
<namePart type="family">Fang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mengxiang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhongjiang</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yongxiang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuangyong</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lin</namePart>
<namePart type="family">Hongfei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tan</namePart>
<namePart type="family">Hongye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Li</namePart>
<namePart type="family">Bin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“本文描述了队伍“TeleAI”在CCL2024古文历史事件类型抽取评测任务(CHED2024)中提交的参赛系统。该任务旨在自动识别出古代文本中的事件触发词与事件类型,其中事件类型判别被分为粗粒度和细粒度的事件类型判别两部分。为了提高古文历史事件类型抽取的性能,我们结合了大模型和小模型,并采用了半监督自训练的方法。在最终的评估中,我们在触发词识别任务得分0.763,粗粒度事件类型判别任务得分0.842,细粒度事件类型判别任务得分0.779,综合得分0.791,在所有单项任务和综合评分上均排名第一。”</abstract>
<identifier type="citekey">weiwei-etal-2024-ji</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-3.19/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>172</start>
<end>177</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 基于大小模型结合与半监督自训练方法的古文事件抽取
%A Fu, Weiwei
%A Wang, Shiquan
%A Fang, Ruiyu
%A Li, Mengxiang
%A He, Zhongjiang
%A Li, Yongxiang
%A Song, Shuangyong
%Y Hongfei, Lin
%Y Hongye, Tan
%Y Bin, Li
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G zho
%F weiwei-etal-2024-ji
%X “本文描述了队伍“TeleAI”在CCL2024古文历史事件类型抽取评测任务(CHED2024)中提交的参赛系统。该任务旨在自动识别出古代文本中的事件触发词与事件类型,其中事件类型判别被分为粗粒度和细粒度的事件类型判别两部分。为了提高古文历史事件类型抽取的性能,我们结合了大模型和小模型,并采用了半监督自训练的方法。在最终的评估中,我们在触发词识别任务得分0.763,粗粒度事件类型判别任务得分0.842,细粒度事件类型判别任务得分0.779,综合得分0.791,在所有单项任务和综合评分上均排名第一。”
%U https://aclanthology.org/2024.ccl-3.19/
%P 172-177
Markdown (Informal)
[基于大小模型结合与半监督自训练方法的古文事件抽取](https://aclanthology.org/2024.ccl-3.19/) (Fu et al., CCL 2024)
ACL
- Weiwei Fu, Shiquan Wang, Ruiyu Fang, Mengxiang Li, Zhongjiang He, Yongxiang Li, and Shuangyong Song. 2024. 基于大小模型结合与半监督自训练方法的古文事件抽取. In Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations), pages 172–177, Taiyuan, China. Chinese Information Processing Society of China.