基于大小模型结合与半监督自训练方法的古文事件抽取

Fu Weiwei (付薇薇), Wang Shiquan (王士权), Fang Ruiyu (方瑞玉), Li Mengxiang (李孟祥), He Zhongjiang (何忠江), Li Yongxiang (李永翔), Song Shuangyong (宋双永)


Abstract
“本文描述了队伍“TeleAI”在CCL2024古文历史事件类型抽取评测任务(CHED2024)中提交的参赛系统。该任务旨在自动识别出古代文本中的事件触发词与事件类型,其中事件类型判别被分为粗粒度和细粒度的事件类型判别两部分。为了提高古文历史事件类型抽取的性能,我们结合了大模型和小模型,并采用了半监督自训练的方法。在最终的评估中,我们在触发词识别任务得分0.763,粗粒度事件类型判别任务得分0.842,细粒度事件类型判别任务得分0.779,综合得分0.791,在所有单项任务和综合评分上均排名第一。”
Anthology ID:
2024.ccl-3.19
Volume:
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)
Month:
July
Year:
2024
Address:
Taiyuan, China
Editors:
Hongfei Lin, Hongye Tan, Bin Li
Venue:
CCL
SIG:
Publisher:
Chinese Information Processing Society of China
Note:
Pages:
172–177
Language:
Chinese
URL:
https://aclanthology.org/2024.ccl-3.19/
DOI:
Bibkey:
Cite (ACL):
Fu Weiwei, Wang Shiquan, Fang Ruiyu, Li Mengxiang, He Zhongjiang, Li Yongxiang, and Song Shuangyong. 2024. 基于大小模型结合与半监督自训练方法的古文事件抽取. In Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations), pages 172–177, Taiyuan, China. Chinese Information Processing Society of China.
Cite (Informal):
基于大小模型结合与半监督自训练方法的古文事件抽取 (Weiwei et al., CCL 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.ccl-3.19.pdf