@inproceedings{nuowei-etal-2024-chinese,
title = "{C}hinese Essay Rhetoric Recognition and Understanding ({CERRU})",
author = "Nuowei, Liu and
Xinhao, Chen and
Yupei, Ren and
Man, Lan and
Xiaopeng, Bai and
Yuanbin, Wu and
Shaoguang, Mao and
Yan, Xia",
editor = "Lin, Hongfei and
Tan, Hongye and
Li, Bin",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-3.28/",
pages = "253--261",
language = "eng",
abstract = "{\textquotedblleft}Rhetoric is fundamental to the reading comprehension and writing skills of primary and middle school students. However, current work independently recognize single coarse-grained categories or fine-grained categories. In this paper, we propose the CCL24-Eval Task6: Chinese Essay Rhetoric Recognition and Understanding (CERRU), consisting of 3 tracks: (1) Fine-grained Form-level Categories Recognition, (2) Fine-grained Content-level Categories Recognition and (3) Rhetorical Component Extraction. A total of 32 teams registered to participate in CERRU and 9 teams submitted evaluation results, with 7 of these teams achieving an overall score that surpassed the baseline.{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nuowei-etal-2024-chinese">
<titleInfo>
<title>Chinese Essay Rhetoric Recognition and Understanding (CERRU)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Liu</namePart>
<namePart type="family">Nuowei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Xinhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ren</namePart>
<namePart type="family">Yupei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lan</namePart>
<namePart type="family">Man</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bai</namePart>
<namePart type="family">Xiaopeng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wu</namePart>
<namePart type="family">Yuanbin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mao</namePart>
<namePart type="family">Shaoguang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xia</namePart>
<namePart type="family">Yan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hongfei</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongye</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“Rhetoric is fundamental to the reading comprehension and writing skills of primary and middle school students. However, current work independently recognize single coarse-grained categories or fine-grained categories. In this paper, we propose the CCL24-Eval Task6: Chinese Essay Rhetoric Recognition and Understanding (CERRU), consisting of 3 tracks: (1) Fine-grained Form-level Categories Recognition, (2) Fine-grained Content-level Categories Recognition and (3) Rhetorical Component Extraction. A total of 32 teams registered to participate in CERRU and 9 teams submitted evaluation results, with 7 of these teams achieving an overall score that surpassed the baseline.”</abstract>
<identifier type="citekey">nuowei-etal-2024-chinese</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-3.28/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>253</start>
<end>261</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Chinese Essay Rhetoric Recognition and Understanding (CERRU)
%A Nuowei, Liu
%A Xinhao, Chen
%A Yupei, Ren
%A Man, Lan
%A Xiaopeng, Bai
%A Yuanbin, Wu
%A Shaoguang, Mao
%A Yan, Xia
%Y Lin, Hongfei
%Y Tan, Hongye
%Y Li, Bin
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G eng
%F nuowei-etal-2024-chinese
%X “Rhetoric is fundamental to the reading comprehension and writing skills of primary and middle school students. However, current work independently recognize single coarse-grained categories or fine-grained categories. In this paper, we propose the CCL24-Eval Task6: Chinese Essay Rhetoric Recognition and Understanding (CERRU), consisting of 3 tracks: (1) Fine-grained Form-level Categories Recognition, (2) Fine-grained Content-level Categories Recognition and (3) Rhetorical Component Extraction. A total of 32 teams registered to participate in CERRU and 9 teams submitted evaluation results, with 7 of these teams achieving an overall score that surpassed the baseline.”
%U https://aclanthology.org/2024.ccl-3.28/
%P 253-261
Markdown (Informal)
[Chinese Essay Rhetoric Recognition and Understanding (CERRU)](https://aclanthology.org/2024.ccl-3.28/) (Nuowei et al., CCL 2024)
ACL
- Liu Nuowei, Chen Xinhao, Ren Yupei, Lan Man, Bai Xiaopeng, Wu Yuanbin, Mao Shaoguang, and Xia Yan. 2024. Chinese Essay Rhetoric Recognition and Understanding (CERRU). In Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations), pages 253–261, Taiyuan, China. Chinese Information Processing Society of China.