@inproceedings{dan-etal-2024-prompting,
title = "Prompting {GPT}-4 for {C}hinese Essay Fluency Evaluation",
author = "Dan, Zhang and
Thuong, Hoang and
Ye, Zhu",
editor = "Lin, Hongfei and
Tan, Hongye and
Li, Bin",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-3.32/",
pages = "285--293",
language = "eng",
abstract = "{\textquotedblleft}This report presents the methodology and results of utilizing GPT-4 for CCL24-Eval Task 7 of Chinese Essay Fluency Evaluation (CEFE). The task is divided into three tracks: Identification of Error Sentence Types, Rewriting Error Sentences, and Essay Fluency Rating. We employed a few-shot prompt engineering to guide GPT-4 in performing this task. Our approach integrated fine-grained error analysis with advanced NLP techniques to provide detailed, actionable feedback for students and teachers. Despite some successes, particularly in generating semantically similar and syntactically relevant corrections, our analysis revealed significant challenges, especially in multiple-label classification and the accurate identification of error types. The report discusses these findings and suggests areas for further improvement.{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dan-etal-2024-prompting">
<titleInfo>
<title>Prompting GPT-4 for Chinese Essay Fluency Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhang</namePart>
<namePart type="family">Dan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hoang</namePart>
<namePart type="family">Thuong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhu</namePart>
<namePart type="family">Ye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hongfei</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongye</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“This report presents the methodology and results of utilizing GPT-4 for CCL24-Eval Task 7 of Chinese Essay Fluency Evaluation (CEFE). The task is divided into three tracks: Identification of Error Sentence Types, Rewriting Error Sentences, and Essay Fluency Rating. We employed a few-shot prompt engineering to guide GPT-4 in performing this task. Our approach integrated fine-grained error analysis with advanced NLP techniques to provide detailed, actionable feedback for students and teachers. Despite some successes, particularly in generating semantically similar and syntactically relevant corrections, our analysis revealed significant challenges, especially in multiple-label classification and the accurate identification of error types. The report discusses these findings and suggests areas for further improvement.”</abstract>
<identifier type="citekey">dan-etal-2024-prompting</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-3.32/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>285</start>
<end>293</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Prompting GPT-4 for Chinese Essay Fluency Evaluation
%A Dan, Zhang
%A Thuong, Hoang
%A Ye, Zhu
%Y Lin, Hongfei
%Y Tan, Hongye
%Y Li, Bin
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G eng
%F dan-etal-2024-prompting
%X “This report presents the methodology and results of utilizing GPT-4 for CCL24-Eval Task 7 of Chinese Essay Fluency Evaluation (CEFE). The task is divided into three tracks: Identification of Error Sentence Types, Rewriting Error Sentences, and Essay Fluency Rating. We employed a few-shot prompt engineering to guide GPT-4 in performing this task. Our approach integrated fine-grained error analysis with advanced NLP techniques to provide detailed, actionable feedback for students and teachers. Despite some successes, particularly in generating semantically similar and syntactically relevant corrections, our analysis revealed significant challenges, especially in multiple-label classification and the accurate identification of error types. The report discusses these findings and suggests areas for further improvement.”
%U https://aclanthology.org/2024.ccl-3.32/
%P 285-293
Markdown (Informal)
[Prompting GPT-4 for Chinese Essay Fluency Evaluation](https://aclanthology.org/2024.ccl-3.32/) (Dan et al., CCL 2024)
ACL
- Zhang Dan, Hoang Thuong, and Zhu Ye. 2024. Prompting GPT-4 for Chinese Essay Fluency Evaluation. In Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations), pages 285–293, Taiyuan, China. Chinese Information Processing Society of China.