基于大模型数据增强的作文流畅性评价方法

Peng Qianwen (彭倩雯), Gao Yanzipeng (高延子鹏), Li Xiaoqing (李晓青), Min Fanke (闵凡珂), Li Mingrui (李明锐), Wang Zhichun (王志春), Liu Tianyun (刘天昀)


Abstract
“CCL2024-Eval任 务7为 中 小 学 生 作 文 流 畅 性 评 价 (Chinese Essay Fluency Evalua-tion,CEFE),该任务定义了三项重要且富有挑战性的问题,包括中小学作文病句类型识别、中小学作文病句改写、以及中小学作文流畅性评级。本队伍参加了评测任务7的三项子任务,分别获得了45.19、43.90和45.84的得分。本报告详细介绍本队伍在三个子任务上采用的技术方法,并对评测结果进行分析。”
Anthology ID:
2024.ccl-3.33
Volume:
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)
Month:
July
Year:
2024
Address:
Taiyuan, China
Editors:
Hongfei Lin, Hongye Tan, Bin Li
Venue:
CCL
SIG:
Publisher:
Chinese Information Processing Society of China
Note:
Pages:
294–301
Language:
Chinese
URL:
https://aclanthology.org/2024.ccl-3.33/
DOI:
Bibkey:
Cite (ACL):
Peng Qianwen, Gao Yanzipeng, Li Xiaoqing, Min Fanke, Li Mingrui, Wang Zhichun, and Liu Tianyun. 2024. 基于大模型数据增强的作文流畅性评价方法. In Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations), pages 294–301, Taiyuan, China. Chinese Information Processing Society of China.
Cite (Informal):
基于大模型数据增强的作文流畅性评价方法 (Qianwen et al., CCL 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.ccl-3.33.pdf