@inproceedings{yueyi-yuxuan-2024-chinese,
title = "{C}hinese Parataxis Graph({CPG}) Parsing Based on Large Language Models",
author = "YueYi, Sun and
Yuxuan, Wang",
editor = "Lin, Hongfei and
Tan, Hongye and
Li, Bin",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-3.6/",
pages = "51--61",
language = "eng",
abstract = "{\textquotedblleft}This paper presents the work submitted for the 23rd China National Conference on Computational Linguistics(Evaluation Workshop)(CCL24-Eval), focusing on the Chinese Parataxis Graph (CPG) Parsing task. CPG represents Chinese natural language hierarchically through relational triplets, providing a consistent representation for linguistic units of varying levels. Our approach has used large-scale language models through full fine-tuning, achieving the result with F1 value at 71.6{\%} in the contest and 74.76{\%} after the contest. Furtehrmore, our team has proposed a combined model that integrates multiple LoRA fine-tuned medium-scale models after the contest. This approach is able to minimize the time and space consumption while keeping the performance of CPG construction task relatively high.{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yueyi-yuxuan-2024-chinese">
<titleInfo>
<title>Chinese Parataxis Graph(CPG) Parsing Based on Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sun</namePart>
<namePart type="family">YueYi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wang</namePart>
<namePart type="family">Yuxuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hongfei</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongye</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“This paper presents the work submitted for the 23rd China National Conference on Computational Linguistics(Evaluation Workshop)(CCL24-Eval), focusing on the Chinese Parataxis Graph (CPG) Parsing task. CPG represents Chinese natural language hierarchically through relational triplets, providing a consistent representation for linguistic units of varying levels. Our approach has used large-scale language models through full fine-tuning, achieving the result with F1 value at 71.6% in the contest and 74.76% after the contest. Furtehrmore, our team has proposed a combined model that integrates multiple LoRA fine-tuned medium-scale models after the contest. This approach is able to minimize the time and space consumption while keeping the performance of CPG construction task relatively high.”</abstract>
<identifier type="citekey">yueyi-yuxuan-2024-chinese</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-3.6/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>51</start>
<end>61</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Chinese Parataxis Graph(CPG) Parsing Based on Large Language Models
%A YueYi, Sun
%A Yuxuan, Wang
%Y Lin, Hongfei
%Y Tan, Hongye
%Y Li, Bin
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G eng
%F yueyi-yuxuan-2024-chinese
%X “This paper presents the work submitted for the 23rd China National Conference on Computational Linguistics(Evaluation Workshop)(CCL24-Eval), focusing on the Chinese Parataxis Graph (CPG) Parsing task. CPG represents Chinese natural language hierarchically through relational triplets, providing a consistent representation for linguistic units of varying levels. Our approach has used large-scale language models through full fine-tuning, achieving the result with F1 value at 71.6% in the contest and 74.76% after the contest. Furtehrmore, our team has proposed a combined model that integrates multiple LoRA fine-tuned medium-scale models after the contest. This approach is able to minimize the time and space consumption while keeping the performance of CPG construction task relatively high.”
%U https://aclanthology.org/2024.ccl-3.6/
%P 51-61
Markdown (Informal)
[Chinese Parataxis Graph(CPG) Parsing Based on Large Language Models](https://aclanthology.org/2024.ccl-3.6/) (YueYi & Yuxuan, CCL 2024)
ACL