@inproceedings{mengxi-etal-2024-zhong,
title = "中文意合图语义解析评测",
author = "Mengxi, Guo and
Meng, Li and
Zeying, Jin and
Xiaojing, Wu and
Gaoqi, Rao and
Gongbo, Tang and
Endong, Xun",
editor = "Lin, Hongfei and
Tan, Hongye and
Li, Bin",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-3.9/",
pages = "80--86",
language = "zho",
abstract = "{\textquotedblleft}中文意合图是近年提出的中文语义表示方法。本次评测是首次基于意合图理论的语义分析评测,旨在探索面向意合图理论的语义计算方法,评估机器的语义分析能力。本次评测共有14支队伍报名,最终有7支队伍提交结果,其中有5支队伍提交技术报告与模型,均成功复现。在评测截止时间内,表现最好的队伍使用大语言模型LoRA微调方法获得了F1值为72.06{\%}的成绩。在最终提交技术报告的5支队伍中,有4支队伍使用了大语言模型微调方法,在一定程度上表明了目前技术发展的趋势。{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mengxi-etal-2024-zhong">
<titleInfo>
<title>中文意合图语义解析评测</title>
</titleInfo>
<name type="personal">
<namePart type="given">Guo</namePart>
<namePart type="family">Mengxi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Li</namePart>
<namePart type="family">Meng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jin</namePart>
<namePart type="family">Zeying</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wu</namePart>
<namePart type="family">Xiaojing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rao</namePart>
<namePart type="family">Gaoqi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tang</namePart>
<namePart type="family">Gongbo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xun</namePart>
<namePart type="family">Endong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hongfei</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongye</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“中文意合图是近年提出的中文语义表示方法。本次评测是首次基于意合图理论的语义分析评测,旨在探索面向意合图理论的语义计算方法,评估机器的语义分析能力。本次评测共有14支队伍报名,最终有7支队伍提交结果,其中有5支队伍提交技术报告与模型,均成功复现。在评测截止时间内,表现最好的队伍使用大语言模型LoRA微调方法获得了F1值为72.06%的成绩。在最终提交技术报告的5支队伍中,有4支队伍使用了大语言模型微调方法,在一定程度上表明了目前技术发展的趋势。”</abstract>
<identifier type="citekey">mengxi-etal-2024-zhong</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-3.9/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>80</start>
<end>86</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 中文意合图语义解析评测
%A Mengxi, Guo
%A Meng, Li
%A Zeying, Jin
%A Xiaojing, Wu
%A Gaoqi, Rao
%A Gongbo, Tang
%A Endong, Xun
%Y Lin, Hongfei
%Y Tan, Hongye
%Y Li, Bin
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G zho
%F mengxi-etal-2024-zhong
%X “中文意合图是近年提出的中文语义表示方法。本次评测是首次基于意合图理论的语义分析评测,旨在探索面向意合图理论的语义计算方法,评估机器的语义分析能力。本次评测共有14支队伍报名,最终有7支队伍提交结果,其中有5支队伍提交技术报告与模型,均成功复现。在评测截止时间内,表现最好的队伍使用大语言模型LoRA微调方法获得了F1值为72.06%的成绩。在最终提交技术报告的5支队伍中,有4支队伍使用了大语言模型微调方法,在一定程度上表明了目前技术发展的趋势。”
%U https://aclanthology.org/2024.ccl-3.9/
%P 80-86
Markdown (Informal)
[中文意合图语义解析评测](https://aclanthology.org/2024.ccl-3.9/) (Mengxi et al., CCL 2024)
ACL
- Guo Mengxi, Li Meng, Jin Zeying, Wu Xiaojing, Rao Gaoqi, Tang Gongbo, and Xun Endong. 2024. 中文意合图语义解析评测. In Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations), pages 80–86, Taiyuan, China. Chinese Information Processing Society of China.