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The utilization of monolingual data has been shown to be a promising strategy for addressing
low-resource machine translation problems. Previous studies have demonstrated the effectiveness
of techniques such as back-translation and self-supervised objectives, including masked language
modeling, causal language modeling, and denoise autoencoding, in improving the performance
of machine translation models. However, the manner in which these methods contribute to the
success of machine translation tasks and how they can be effectively combined remains an under-
researched area. In this study, we carry out a systematic investigation of the effects of these
techniques on linguistic properties through the use of probing tasks, including source language
comprehension, bilingual word alignment, and translation fluency. We further evaluate the
impact of pre-training, back-translation, and multi-task learning on bitexts of varying sizes.
Our findings inform the design of more effective pipelines for leveraging monolingual data in
extremely low-resource and low-resource machine translation tasks. Experiment results show
consistent performance gains in seven translation directions, which provide further support for
our conclusions and understanding of the role of monolingual data in machine translation.

1. Introduction

The Neural Machine Translation (NMT) model has shown significant improvement
in translation tasks when trained on large-scale parallel data. However, low-resource
machine translation remains a challenging area of research in the field. To address
this, recent studies have explored the utilization of easily collected monolingual data
in training low-resource NMT models through techniques such as pre-training (PT),
back-translation (BT), and multi-task learning (MTL) (Luong et al. 2016; Edunov et al.
2018; Wang, Zhai, and Hassan 2020). These methods have respectively demonstrated
impressive performance, highlighting the potential of exploiting monolingual data for
enhancing low-resource machine translation tasks.

The utilization of monolingual data in the low-resource NMT is an active research
area. BT synthesizes pseudo bitexts by translating target monolingual text into source
language text (Sennrich, Haddow, and Birch 2016b). PT, on the other hand, leverages a
large amount of monolingual data through self-supervised objectives such as masked
language modeling (MLM), causal language modeling (CLM), and denoise autoen-
coding (DAE) (Devlin et al. 2019; Liu et al. 2020; Radford et al. 2018, 2019). MTL,
meanwhile, combines self-supervised objectives with the translation task to addition-
ally learn monolingual knowledge (Luong et al. 2016; Wang, Zhai, and Hassan 2020;
Gulcehre et al. 2015). While these methods have demonstrated promising results, there
is a lack of clarity on how they contribute to the improvement of NMT models and how
they interact with each other. This article aims to address these gaps by investigating
the impact and interplay of these methods on low-resource translation tasks.

In this article, we aim to: (1) examine the impact of BT and the three self-supervised
objectives on three key aspects of a translation model, as determined through prob-
ing tasks, including source language understanding, bilingual word alignment, and
translation fluency, which are three relevant tasks to NMT (Snover et al. 2009; Garg
et al. 2019; Zhu et al. 2020; Kong et al. 2021) and proved as three crucial factors
for enhancing translation quality in our experiments, and (2) compare the translation
performance of MTL methods, PT methods, and BT with various bitext scale settings,
including both extremely low-resource and low-resource settings. We specifically con-
sider three widely used self-supervised objectives, namely, MLM, CLM, and DAE.
Our results demonstrate that the combination of the three self-supervised objectives
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enhances source language understanding, improves bilingual word alignment, and
results in competitive translation fluency. Furthermore, BT has a positive effect on
both bilingual word alignment and translation fluency. Meanwhile, MTL effectively
trains the translation model with self-supervised objectives and shows potential for
mitigating the catastrophic forgetting effect (Thompson et al. 2019; Wang, Zhai, and
Hassan 2020). By incorporating self-supervised objectives, the multi-task fine-tuning
method further improves translation quality. Based on these findings, we explore more
effective strategies for utilizing source-side and target-side monolingual data in low-
resource translation tasks. Experiment results on seven translation directions, including
similar and distant pairs, echo our claims and understandings.

Our main contributions in this article are: (1) We perform a comprehensive inves-
tigation on the impact of self-supervised objectives and back-translation on a transla-
tion model by conducting extensive linguistic probing tasks, providing a fine-grained
analysis of the effects on source language understanding, bilingual word alignment,
and translation fluency; (2) We compare and evaluate the translation performance of
pre-training (PT), back-translation (BT), and multi-task learning (MTL) methods with
various bitext scales, including extremely low-resource and low-resource settings; and
(3) Based on the results and our analysis, we further validate our observations by de-
signing pipelines that successfully improve the performance of extremely low-resource
and low-resource translation tasks.

2. Preliminaries

2.1 Background
2.1.1 Back-Translation. Back-Translation (BT) is a data synthesis alternative (Bertoldi and
Federico 2009; Bojar and Tamchyna 2011) then proposed for improving the NMT model
(Sennrich, Haddow, and Birch 2016a). BT requires a reversed NMT model to translate
target-side monolingual sentences to source-side sentences and generates pseudo pairs.
Previous works have demonstrated the effectiveness of BT in improving translation
quality, as it enriches the dataset and provides additional alignment examples for the
NMT model (Edunov et al. 2018; Caswell, Chelba, and Grangier 2019; Liu et al. 2021). In
this article, we aim to further understand the linguistic effects of BT on the translation
model through a comprehensive investigation utilizing three linguistic probing tasks
and to evaluate the effectiveness of BT synthetic data for extremely low-resource and
low-resource tasks. We note that forward-translation is another data synthesis method,
of which the generated target-side sentences are too noisy to enhance the low-resource
tasks (Tars, Tättar, and Fišel 2021).

2.1.2 Masked Language Modeling. The masked language model (MLM) is a self-
supervised pre-training objective, first introduced by Devlin et al. (2019), designed
to train the encoder of a model on monolingual data. The objective of MLM is to
randomly mask a percentage of input tokens and then require the model to predict these
masked tokens. Previous work has demonstrated the benefits of MLM pre-training on
translation tasks (Rothe, Narayan, and Severyn 2019; Zhu et al. 2020). Recently, Wang,
Zhai, and Hassan (2020) extended the use of MLM to multi-task learning, resulting in
improved translation performance in a multilingual setting. These findings emphasize
the importance of source language understanding for improving translation quality.

2.1.3 Causal Language Modeling. The pre-training of the language model via CLM in-
volves maximizing the likelihood of generating text in an auto-regressive manner
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(Radford et al. 2018). In the translation domain, pre-trained language models such as
GPT2 have been used to initialize the decoder of a transformer model, excluding the
cross-attention layer. However, Rothe, Narayan, and Severyn (2020) found that a model
initialized with CLM (GPT2) performed comparatively poorly in translation tasks when
compared with a model initialized with MLM (BERT). Another recent study (Baziotis,
Haddow, and Birch 2020) leverages the pre-trained CLM as an informative prior by
adding a regularization term that encourages the output of the translation model to
conform to the distributions generated by the language model. Despite these findings,
further analysis is needed to better understand the impact of CLM on NMT models.

2.1.4 Denoise Autoencoding. DAE is a sequence-to-sequence (seq-to-seq) self-supervised
objective, which trains a model to recover a noisy sentence. DAE has been applied to
various tasks in the NLP community, including pre-trained models, multi-task learning,
and so on (Kim, Geng, and Ney 2019; Lewis et al. 2020; Liu et al. 2020; Wang, Zhai, and
Hassan 2020). To improve DAE, these studies put in efforts to propose various noisy
functions for better training a model, showing that DAE effectively learns from a large
scale of monolingual data. We are going to study the insight linguistic effects of DAE
on a translation model. Following the noise setting of Lample et al. (2017), we adopt
three types of noise functions. (1) Word Shuffle: slightly shuffles the original sentence. We
apply a random permutation σ to the original sentence in condition of ∀i ∈ 1, n, |σ(i)−
i| ≤ k where n is the sentence length and k is set to 3 by default. (2) Word Drop: we drop
every word in the original sentence with a constant probability pwd, which we set to 0.1
by default. (3) Word Blank, we replace every word in the original sentence to unk token
with a constant probability pwb, which we set to 0.1 by default.

2.2 Rethinking Monolingual Exploitation

In the field of NLP, three prevalent pre-trained models are BERT (Devlin et al. 2019),
GPT2 (Radford et al. 2019), and mBART (Liu et al. 2020), which are trained on the MLM,
CLM, and DAE objectives, respectively. These models have demonstrated their ability
to effectively learn language knowledge from monolingual data. Previous studies have
shown that these pre-trained models can improve few-shot tasks such as low-resource
translation (Liu et al. 2020; Rothe, Narayan, and Severyn 2020; Wang, Zhai, and Hassan
2020). Despite the widespread use of these models, there is currently a lack of fair
comparisons between them in the context of identical monolingual data and model
settings. Another method for leveraging monolingual data in translation models is BT,
which uses data synthesis to improve the translation model. However, the difference
between the effects of BT and self-supervised objectives on translation models is not yet
fully understood.

The encoder and decoder are two essential components in a translation model. The
encoder is responsible for understanding the source sentence and generating sentence
features, while the decoder generates the target sentence given the source sentence
features. In recent studies, the utilization of pre-trained encoders, such as BERT, has
been shown to improve translation quality through model initialization and incorpo-
ration (Rothe, Narayan, and Severyn 2019; Zhu et al. 2020). These results highlight
the significance of source language understanding in facilitating translation tasks. The
decoder, on the other hand, attends to the output of the encoder and generates the
translation. Research has shown that a translation model can generate accurate word
alignment using the cross-attention matrix (Garg et al. 2019; Chen et al. 2020), indicating
that word alignment is closely related to the translation task. Additionally, translation
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fluency is a crucial metric for evaluating translation quality (Snover et al. 2009). In con-
clusion, source language understanding, bilingual alignment, and translation fluency
are considered as three essential factors for the performance of a translation model.
Thus, we propose three probing tasks to evaluate the impact of BT and three self-
supervised objectives on these crucial aspects, respectively.

2.3 Experiment Setup
2.3.1 Data. We utilize 5 million monolingual data for each language from the
publicly available News-Crawl corpus.1 Our translation experiments are conducted
on widely used translation benchmark datasets, including the WMT and OPUS-
100 datasets. We adopt three WMT benchmarks, including the WMT14 English-
German (EN-DE), WMT18 English-Turkish (EN-TR), and WMT16 English-Romanian
(EN-RO) datasets. To analyze the effects of different methods under different re-
source settings, we further randomly sample 7 subsets from the EN-DE dataset,
including 5k, 10k, and 15k for extremely low-resource settings, and 50k, 100k,
200k, and 500k for low-resource settings, following Gu et al. (2018b). Specifically,
the EN-DE 10k dataset contains 10k sentence pairs as a training set, and the
other datasets are similarly structured. We randomly sample 10k sentence pairs
for the EN-RO dataset to conduct extremely low-resource translation tasks. For
the OPUS datasets, we randomly sample 10k and 100k bitexts on four translation
pairs from the OPUS-100 dataset (Zhang et al. 2020), which include English-French
(EN-FR), English-Russian (EN-RU), English-Arabic (EN-AR), and English-Chinese
(EN-ZH) language pairs, and the validation and test sets remain unchanged. We denote
each dataset using the translation direction and the number of sentence pairs, such as
EN-DE 100k. The details are as follows:

• The EN-DE of 5k, 10k, 15k, 50k, 100k, 200k, and 500k: These seven
datasets are subsets of the commonly used WMT14 English-Germany
benchmark, which includes 5k, 10k, 15k, 50k, 100k, 200k, and 500k
training pairs. We use newstest2013 and newstest2014 as the evaluation set
and testing set, respectively. For a fair comparison in probing tasks, all
these datasets share the same 32k bpe vocabulary following Edunov et al.
(2018).

• EN-RO 10k and EN-RO: The evaluation set and testing set are
newstest2015 and newstest2016. EN-RO refers to the commonly used
benchmark WMT16 English-Romania. EN-RO 10k is a subset of EN-RO,
which contains 10k parallel training data. Specifically, we learn 32k bpe
vocabulary for EN-RO 10k with monolingual data following Gu et al.
(2018a).

• EN-TR: This dataset is a low-resource translation benchmark, WMT18
English-Turkish. The evaluation set and testing set are Newstest2017 and
Newstest2018, respectively.

• EN-FR, EN-RU, EN-AR, and EN-ZH: The training sets of these for
translation direction are sampled from OPUS-100, and the validation and
test sets are unchanged. We sample the sentence with lengths between 10

1 https://data.statmt.org/news-crawl/.
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and 80. For our experiments, we sample 10k for the extremely
low-resource setting and 100k for the low-resource setting.

2.3.2 Probing Task. The three probing tasks, which are source language understanding,
bilingual word alignment, and translation fluency, are conducted on finetuned transla-
tion models of EN-DE 100k and EN-DE 200k. The details are as followed:

1. For the task of source language understanding, we utilize the SentEval
framework, which includes ten classification tasks for a comprehensive
analysis (Conneau and Kiela 2018). SentEval is structured based on
different linguistic properties, including surface information (Surf.),
syntactic information (Sync.), and semantic information (Semc.). More
details regarding SentEval can be found in Appendix A. For the
downstream tasks, we freeze the parameters of the encoder and add a
trainable classification head. We use Accuracy as the evaluation metric.

2. For the bilingual word alignment task, we utilize the alignment test set
as provided in Vilar, Popović, and Ney (2006). Our models are not
fine-tuned on the alignment task training set. The alignments are induced
using the cross-attention weight, as described in Garg et al. (2019). The
alignment error rate (AER) is used as the evaluation metric, as adopted
in previous work such as Zhang and Zong (2016) and Chen et al. (2020).

3. For the translation fluency task, we assess the quality of translations by
computing their perplexity (PPL) using the German-GPT2 language
model (Schweter 2020). The fluency of the translations is reported as the
average PPL over all the sentences.

2.3.3 Settings. In order to make a fair comparison in our experiments, we use the
Transformer base architecture as described in Vaswani et al. (2017). We leverage the
subword-nmt toolkit to learn bpe subwords and create a joint dictionary for all datasets.2

We also include language tags in each sentence during training and inference, following
the methodology in Liu et al. (2020). We use the Adam optimizer (Kingma and Ba
2015) with specified hyperparameters β1 = 0.9, β2 = 0.98, and ε = 10−9 to optimize the
model parameters. The pre-trained model is trained with mini-batches of 32K target-
language tokens for 150,000 steps. The early-stop strategy is adopted for training the
translation tasks with a patience of 10. All experiments were conducted on 4 Nvidia
Tesla V100 32GB GPUs, using the fairseq toolkit.3 The noisy functions of the MLM
and DAE objectives are applied with default settings as described in previous works
(Lample et al. 2017; Devlin et al. 2019). The settings of the four technologies are:

• For BT, we train a reverse translation model to generate 5 million BT
synthetic bitexts for each language direction.

2 https://github.com/rsennrich/subword-nmt.
3 https://github.com/facebookresearch/fairseq.
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• The MLM objective is achieved by adding an additional output layer
Φhead to the encoder and trains the encoder on source-side monolingual
data to predict masked tokens.

• The CLM objective is performed by ignoring the cross-attention modules
and trains all other decoder modules on target-side monolingual data.

• The DAE objective is achieved by training both the encoder and decoder
on source-side and target-side monolingual data.

Given a source and target monolingual sentence, x and y, the model Θ = {Θenc, Θdec}
can be pre-trained with the following joint objective:

J = log P(x|x̂; Θenc, Φhead)︸ ︷︷ ︸
MLM

+ log P(y|ŷ; Θdec)︸ ︷︷ ︸
CLM

+ log P(x|x̂; Θ) + log P(y|ŷ; Θ)︸ ︷︷ ︸
DAE

(1)

where Φhead is a linear layer sharing the same parameter with the embedding layer
following Devlin et al. (2019), and x̂ and ŷ are the noise version of x and y, respectively.
In practical use, each above objective can be controlled by adding and removing its
training terms, such as removing CLM and DAE for MLM pre-training. In the fine-
tuning stage, we can add the translation objective for the golden training pairs and the
BT synthetic data, respectively.

2.3.4 Evaluation. For the evaluation of EN-DE machine translation performance, we
follow Vaswani et al. (2017) to evaluate the tokenized BLEU score for all models via
compound split bleu.perl.4 In the case of EN-RO machine translation, we adopt the to-
kenization and normalization procedures described in Sennrich, Haddow, and Birch
(2016a) by using the Moses script.5 For EN-TR, the BLEU score is measured by the de-
tokenized case-sensitive SacreBLEU (Kudo and Richardson 2018).6 For EN-FR, EN-RU,
EN-AR, and EN-ZH, the tokenized BLEU score is computed using SacreBLEU.

3. Understanding Monolingual Exploitation

In this section, we first conduct probing tasks on understanding the effects of BT,
MLM, CLM, and DAE on translation models, respectively. Then, in Section 3.4, we
further compare these methods on translation tasks with various bitext sizes, including
extremely low-resource settings and low-resource settings. In this article, we denote the
joint objective of MLM, CLM, and DAE as MLM+CLM+DAE.

3.1 Source Language Understanding

The probing tasks of SentEval are conducted on the translation model encoder for
fine-grained analysis, in order to explore two questions: (1) How do existing methods
influence the translation model encoder on linguistic properties? and (2) Are self-
supervised objectives complementary to each other? For probing tasks, we initialize the

4 https://github.com/facebookresearch/fairseq/blob/main/scripts/compound_split_bleu.sh.
5 https://github.com/rsennrich/wmt16-script.
6 BLEU|nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0.
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Table 1
Classification accuracy on SentEval probing tasks of evaluating the linguistic properties. “+BT”
means training a translation model with BT synthetic parallel data. “MLM+CLM+DAE” means
the joint objective of the three self-supervised objectives.

Method
EN-DE 100k EN-DE 200k

Surf. Sync. Semc. Surf. Sync. Semc.
base 54.93 49.71 68.47 47.62 51.00 69.39
+BT 55.99 47.28 60.08 32.37 45.35 66.61
MLM 68.56 56.74 68.90 57.45 54.46 69.29
CLM 60.79 52.46 69.73 52.62 53.25 70.55
DAE 61.86 49.08 70.10 64.43 50.29 70.92
MLM+CLM+DAE 69.37 54.96 73.15 83.53 59.97 72.96

(a) Average classification accuracy of EN-DE 100k and EN-DE 200k.

Method
Surf. Sync. Semc.

Seln WC TDep ToCo BShif Tense SubN ObjN SoMo CoIn
base 46.21 63.64 33.22 62.78 53.14 82.67 77.14 76.87 50.03 57.10
+BT 67.37 44.61 30.46 61.37 50.01 68.74 68.50 63.28 49.87 50.01
MLM 70.65 66.47 37.67 70.80 61.75 83.36 77.41 76.50 50.42 56.83
CLM 70.05 51.53 37.03 67.10 53.26 82.81 78.58 77.85 50.01 59.38
DAE 58.40 65.32 33.20 61.17 52.87 86.26 78.76 79.52 50.53 57.10
MLM+CLM+DAE 72.07 66.67 38.49 68.02 58.36 86.98 84.05 83.21 53.57 57.94

(b) Detailed classification accuracy of EN-DE 100k.

Method
Surf. Sync. Semc.

Seln WC TDep ToCo BShif Tense SubN ObjN SoMo CoIn
base 29.04 66.19 32.09 64.86 56.04 84.09 78.62 77.61 51.04 55.59
+BT 17.32 47.42 24.66 56.06 55.34 80.72 75.32 73.33 49.47 54.19
MLM 65.65 49.25 34.7 66.98 61.71 85.06 76.96 77.34 49.97 57.13
CLM 45.47 59.76 34.58 69.26 55.92 84.86 80.23 79.23 50.31 58.10
DAE 70.14 58.72 35.26 62.84 52.77 86.21 79.13 81.15 50.97 57.15
MLM+CLM+DAE 87.72 79.34 42.18 75.70 62.02 88.09 82.74 82.38 51.97 59.64

(c)Detailed classification accuracy of EN-DE 200k.

probing model with a translation model encoder and an additional classification head.
Then, we further fine-tune the classification head on 10 classification probing tasks of
SentEval by freezing the classification head, respectively. The hyperparameters of these
tasks are the same as the configuration of Conneau and Kiela (2018). The models are
trained until early stopping based on the validation loss, with a patience of 10. The 10
probing tasks are divided into three categories (Conneau and Kiela 2018): (1) surface
tasks (Surf.) evaluate surface properties in the sentence embedding; (2) syntactic tasks
(Sync.) are designed to evaluate the capabilities of the encoder on capturing the syntactic
information; (3) semantic tasks (Semc.) assess the ability of the encoder to understand
a sentence in the semantic level. The detailed information is listed in Appendix A. The
average results for these three categories are reported in Table 1a.

Observation 1. The results of our experiments demonstrate that the self-supervised objectives
respectively improve source language understanding and are complementary to each other. The
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joint objective of MLM+CLM+DAE further yields performance gains. The results show that
MLM achieves the highest accuracy improvements in the surface and syntactic prop-
erties, with increases of up to 3.73 and 7.03 in EN-DE 100k, and up to 9.83 and 3.46
in EN-DE 200k, respectively, compared with the base model. These indicate that the
MLM objective is beneficial for capturing the surface and syntactic information. Among
the three objectives, DAE demonstrates the best performance in the semantic property,
with an accuracy of 70.10, which benefits from the use of both source-side and target-
side monolingual data. CLM shows improvement in these probing tasks despite only
being trained on target-side monolingual data and initializing the shared embedding
layer. It is known that the MLM pre-trained model learns to extract the surface, syn-
tactic, and semantic information via predicting the masking words (Jawahar, Sagot,
and Seddah 2019), and our experiment finds that its translation model demonstrates
superiority in surface and syntactic tasks compared with those of CLM and DAE. For
the semantic tasks, the translation model of DAE outperforms both those of MLM
and CLM, while CLM achieves second place. As a reason, DAE trains an encoder-
to-decoder model to generate a sentence, which may require the encoder to generate
deeper hidden features. The encoder of CLM is randomly initialized and trained on
translation tasks, which directly captures deeper linguistic properties, such as semantic
information (Hao et al. 2019; Xu et al. 2019). By simply combining them, the joint
objective of MLM+CLM+DAE informs significant improvements in surface, syntactic,
and semantic properties for the translation model, with gains of up to 14.44, 5.25, and
4.68 in EN-DE 100k, and up to 35.91, 8.97, and 3.57 in EN-DE 200k, compared with the
base model, respectively. Overall, the results of our experiments suggest that these self-
supervised objectives are complementary to each other in terms of improving source
language understanding.

Observation 2. The experiment results indicate that training a translation model on BT synthetic
data negatively impacts the syntactic and semantic understanding of the encoder. Although
there is a slight improvement in the surface property for EN-DE 100k, the results of
training a translation model with both golden bitexts and BT synthetic data suggest a
detrimental effect on the syntactic and semantic understanding of the model encoder for
both EN-DE 100k and EN-DE 200k. Specifically, the average accuracy of Sync. degrades
to 47.28, while that of Semc. degrades to 60.08 for EN-DE 100k, and those degrade to
45.35 and 66.61 for EN-DE 200k, respectively. These highlight the significant impact of
the noise present in BT data on the encoder’s ability to understand source sentences.
Previous research has demonstrated that the BT synthetic data is of noise and could
potentially interfere with the encoder’s encoding process, especially for the translation
task with a small dataset (Edunov et al. 2018).

In general, using monolingual data through self-supervised objectives can improve
a model’s ability to capture the linguistic properties of source sentences, while training
with BT data informs some negative impacts. Nevertheless, both pre-training and back-
translation play crucial roles in enhancing the quality of translations for low-resource
tasks as demonstrated in previous studies (Edunov et al. 2018; Liu et al. 2020, 2021).
For translation tasks, BT synthesizes pseudo bitexts and has been shown to alleviate
the data scarcity problem (Sennrich, Haddow, and Birch 2016b; Edunov et al. 2018).
Therefore, although BT introduces some noisy data, it may improve other properties of
a translation model. To further investigate the difference between pre-training and back-
translation, we conduct experiments on two other key factors of translation models,
which are bilingual word alignment and translation fluency, in the following.
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3.2 Bilingual Word Alignment

Bilingual word alignment, a task of extracting word-level alignments from two bilin-
gual parallel sentences, is closely related to machine translation, as demonstrated by
Ganchev, Graça, and Taskar (2008). Recent studies (Garg et al. 2019; Chen et al. 2020)
have utilized transformer translation models to extract alignments, indicating the pos-
itive correlation between the two tasks. In order to understand the contribution of the
three pre-training methods (MLM, CLM, and DAE) and BT to the translation model, we
use bilingual word alignment as a probing task. To present a concrete comparison, we
present both the average (AVG) and best (BEST) alignment performance across layers,
as the alignments may differ greatly among layers (Garg et al. 2019). The results are
shown in Figure 1.

Observation 3. Pre-training a model with MLM+CLM+DAE achieves both the lower AVG and
BEST AER scores for the bilingual word alignment task. The simultaneous pre-training of
the model with the three self-supervised objectives results in an AVG AER score of
56.1 and a BEST AER score of 41.2 for EN-DE 100k, and an AVG AER score of 59.9
and a BEST AER score of 40.1 for EN-DE 200k, outperforming the base, BT, and three
other individual objectives. DAE shows a better AVG AER score compared with MLM
and CLM, indicating better overall alignment accuracy across different layers. DAE is a
seq-to-seq self-supervised objective that trains both the encoder and decoder, including
cross-attention modules. The cross-attention module queries the encoder output fea-
tures and generates new features for the next layer (Vaswani et al. 2017). In alignment
tasks, we extract the alignment hypothesis from the cross-attention matrix, emphasizing
the importance of accurate attention in the cross-attention layer for the interaction
between source and target features (Gheini, Ren, and May 2021). Additionally, MLM
outperforms the base model on both AVG and BEST metrics for EN-DE 100k and EN-DE
200k, respectively, demonstrating that MLM has effectively learned source monolingual
knowledge. CLM presents some side effects in the translation model trained on EN-
DE 100k, which tend to disappear as the dataset size increases to EN-DE 200k. As
a result, the joint objective of MLM+CLM+DAE in the pre-trained model results in
improved performance for three properties compared to other methods, suggesting the
complementarity of these self-supervised objectives.

Figure 1
Alignment Error Rate (AER) on the English-German test (Vilar, Popović, and Ney 2006). “AVG”
and “BEST” are average AER and the best AER across all layers. Detailed information and
results are presented in Table B.1.
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Table 2
Back-translation synthesis parallel data examples. “S” and “T” stand for pseudo source
sentences and golden target sentences, respectively. We manually recover subwords and mark
the alignments in bold and italics.

S It is pop to America before the Constitution wildfires.
T Diese Bamberger Besonderheit wird bis nach Amerika exportiert.

S In addition, but then.
T Daneben, aber immerhin.

S Harvard professor Martin SVioling suggests posts in a good slogan.
T CEO Martin Senn spricht von einem guten Ergebnis

Observation 4. The utilization of BT enhances the performance of the bilingual word alignment
task to a certain degree. This is achieved through enriching the parallel corpus with the
synthetic data generated by a reversed translation model. To assess the quality of the
generated pseudo-data, we conduct a case study, the results of which are presented
in Table 2. The synthetic instances contain aligned words, which may enrich parallel
corpus and improve word alignment information as well. Therefore, although the
generated data is noisy and harmful for SentEval probing tasks, it probably enhances
word alignment information, which positively affects the alignment performance, as
evidenced by the BEST AER score of 42.2 for EN-DE 100k and the 41.7 for EN-DE 200k.
These results align with the findings discussed in Section 3.1, where it is concluded
that although BT introduces noise to source language understanding, it enhances the
bilingual word alignment ability of the translation model.

The results presented in Figure 1 inform that pre-training with the CLM objective
has some side effects for the bilingual word alignment tasks, while both MLM and DAE
pre-trained models result in improvement. Further comparison is made by evaluating
the joint objective of MLM+DAE as depicted in Table B.1. This combination is compa-
rable with the joint objective of MLM+CLM+DAE, which achieves a lower BEST AER
score but a higher AVG AER score.

3.3 Translation Fluency

Early work has explored the importance of generation fluency for translation tasks
(Snover et al. 2009), indicating that translation fluency is a crucial factor for improving
translation quality, especially for low-resource settings (Xia et al. 2019; Ranathunga
et al. 2021). In this section, we evaluate the translation fluency by computing the
sentence perplexity (PPL) using the German-GPT2 (Schweter 2020) and reporting the
average PPL in Figure 2. Accordingly, we have:

Observation 5. Learning generating target-side monolingual sentences apparently improve
translation fluency. In our experiments, the sentence PPL of the golden reference is 53.9.
The BT synthesis parallel data consists of pseudo-source and golden target sentences,
which are trained during the fine-tuning stage. The CLM objective is trained to causally
generate target-side sentences in the pre-training stage. Both approaches achieve a sig-
nificant improvement in translation fluency, with CLM achieving the lowest PPL score
of 103.3 for the EN-DE 100k setting and the BT method achieving the lowest PPL score
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Figure 2
Perplexity (PPL) on translation sentences. For both reference and hypothesis, we use
German-GPT2 (Schweter 2020) to compute the average PPL.

of 82.3 for the EN-DE 200k. By incorporating these self-supervised objectives, the joint
objective of MLM+CLM+DAE achieves 105.9 and 66.7 PPL scores for both translation
tasks, respectively, representing an 86.7 and a 68.6 score decrease compared with the
base model.

3.4 Bitext Scale Effect

The former observations indicate that the pre-trained model with the joint observation
of MLM+CLM+DAE obtains competitive performance on three probing tasks, com-
pared to individually pre-trained methods. In this section, we investigate the impact
of bitext scales on the performance of the self-supervised objectives and BT in both the
extremely low-resource and low-resource translation task settings. The joint objective
of MLM+CLM+DAE is applied to translation tasks, both in the multi-task learning and
pre-training scenario, with various bitext scale settings. Meanwhile, we investigate the
impact of multi-task fine-tuning methods using target-side monolingual data, such as
CLM and target-side DAE (tDAE), as well as the efficiency of BT on various bitext scales.
The findings are presented in Figure 3 and Table 3.

Observation 6. The pre-trained model with the joint objective of MLM+CLM+DAE consistently
improves the translation quality both for extremely low-resource tasks and low-resource tasks.
In Figure 3, the PT method presents a dominant performance in extremely low-resource
tasks and achieves competitive results on low-resource tasks compared to other meth-
ods such as base, BT, and MTL. For example, in Table 3, the PT method obtains 11.35,
13.39, and 14.33 score gains for 5k, 10k, and 15k settings, respectively, which is far
better performance than the other three methods. This indicates that the PT method
adequately trains the model on monolingual data and provides a better model initial-
ization, which especially benefits extremely low-resource translation tasks. In contrast,
results show that the BT method does not effectively improve the translation quality
in extremely low-resource scenarios, such as datasets with 5k, 10k, and 15k parallel
sentences. Furthermore, the MTL method, which trains both the parallel corpus with
the translation objective and monolingual data with self-supervised objectives simul-
taneously, may introduce a detrimental effect for the extremely low-resource scenario
because the parallel corpus is much smaller than the size of monolingual data.
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Figure 3
BLEU score with various bitext sizes. “tDAE” denotes DAE on target-side monolingual data,
“PT” means the model is first pre-trained with the joint objective of MLM+CLM+DAE. Detailed
information is presented in Table 3.

Table 3
BLEU score on Newstest2014 English-to-Germany. “MTL” denotes multi-task learning with MLM,
CLM, and DAE objectives. “PT” means pre-training a model with MLM, CLM, and DAE
objectives.

Method
Extremely Low-Resource Low-Resource

5k 10k 15k 50k 100k 200k 500k
base 1.04 1.63 1.79 6.19 13.10 17.64 21.18
+BT 1.39 2.85 3.48 16.84 19.05 22.24 23.84
MTL 7.64 10.34 12.04 16.26 18.08 20.29 22.60
PT 12.41 15.02 16.12 18.16 19.00 19.96 21.51

+BT 13.68 15.65 16.33 19.97 20.13 23.41 25.29
+CLM 14.59 16.22 16.77 17.75 18.50 20.68 22.91
+tDAE 14.02 15.59 16.21 17.45 19.46 21.07 23.52
+BT+CLM+tDAE 13.55 15.31 16.16 18.59 20.52 23.93 26.18

Observation 7. BT yields limited improvement in terms of translation quality for extremely low-
resource tasks, but gradually demonstrates its superiority and outperforms other methods as
bitext size increases. In comparison to the base model, training with BT synthetic data
only leads to marginal improvement in BLEU scores for the extremely low-resource
translation tasks, which are 1.39, 2.85, and 3.48 for tasks of 5k, 10k, and 15k bitext size,
respectively. This is due to the fact that the reversed translation models in these cases
tend to produce unreliable source sentences, whose pseudo bitexts are too detrimental
to the translation models (Gu et al. 2018a; Edunov et al. 2018). Furthermore, for these
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cases, training with BT synthetic data following pre-training still yields a lower perfor-
mance compared to training using the target-side generation knowledge via multi-task
fine-tuning with the CLM objective (see the curve of “PT: +CLM” in Figure 3). However,
as the bitext size increases to 50k, 100k, 200k, and 500k in our experiments, the BT
method gradually demonstrates improved performance and outperforms some other
methods, indicating that high-quality synthetic data plays a crucial role in boosting the
performance of a translation model in the general low-resource setting.

Observation 8. The results suggest that the MTL method has limited improvement on the
translation model compared with other methods in most cases, but begins to exhibit superiority
in larger bitext scenarios such as 200k and 500k. In most cases (< 200k), the performance
gains obtained from the MTL method are inferior to those of the PT methods, which
adopt the same joint objective of MLM+CLM+DAE in the pre-training stage. However,
as the bitext size increases, the performance gap between the MTL and PT methods
gradually decreases, and the MTL method even outperforms the PT method in the 200k
and 500k scenarios. These results hint that the MTL method has the potential to further
enhance translation quality in the fine-tuning stage.

Observation 9. Multi-task fine-tuning with self-supervised objectives further improves transla-
tion qualities for both the extremely low-resource task and the low-resource tasks. In Table 3,
the results reveal that fine-tuning with the CLM objective successfully improves perfor-
mance in extremely low-resource settings. In cases of low-resource tasks with more than
50k bitexts, a more pronounced improvement in translation quality is observed when
fine-tuning with both the CLM and tDAE objectives, as well as training additional BT
synthetic data. This indicates that multi-task fine-tuning is of great potential to mitigate
the issue of catastrophic forgetting.

Overall, to build a translation model with limited parallel corpus, we can first pre-
train the encoder-to-decoder model with the joint objective of MLM+CLM+DAE for
obtaining linguistic properties. Then, in the fine-tuning stage, multi-task fine-tuning
further makes use of the monolingual data to improve the translation quality.

4. Pipelines on the Exploitation of Monolingual Data

In this section, we design two pipelines for both the extremely low-resource and low-
resource translation tasks, respectively. Then we conduct evaluation experiments on
public-available datasets, including similar and distant translation pairs, to validate our
claims and findings.

4.1 Pipelines
4.1.1 Pipeline on Extremely Low-Resource Setting. According to observations 1, 3, and
6, we find that pre-training the encoder-to-decoder model with a joint objective of
MLM+CLM+DAE can lead to the following outcomes: (1) improved linguistic prop-
erties of the source sentences, (2) enhanced bilingual word alignment performance,
and (3) competitive translation fluency. This provides a decent model initialization
for extremely low-resource translation tasks, where the PT approach shows significant
improvements in translation quality as shown in Table 3. Thus, the initial step in our
pipeline involves pre-training the model with the joint objective of MLM+CLM+DAE.
In the fine-tuning stage, the translation model is further improved by multi-task learn-
ing with the CLM objective, as informed in Observations 5 and 9.
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4.1.2 Pipeline on Low-Resource Setting. For low-resource translation tasks, we adopt a
pre-training strategy that leverages the joint objective of MLM+CLM+DAE. In the fine-
tuning stage, we utilize multi-task fine-tuning to further leverage target-side monolin-
gual data, incorporating BT, CLM, and tDAE objectives, as informed in Observations 4,
5, and 6. The observations in Section 3 indicate that BT can enhance the word alignment
performance and generation fluency of a translation model, while CLM and tDAE
have a positive impact as well. In contrast to the extreme low-resource setting, the BT
synthetic data is less noisy and substantially improves the translation model of the low-
resource tasks, as observed in Observation 7.

To demonstrate our findings, we include two popular and effective existing meth-
ods as our baselines, including fine-tuning on MLM pre-trained and DAE pre-trained
models (Devlin et al. 2019; Liu et al. 2020). For a sound comparison, on the one hand,
we combine all the techniques, including MLM, CLM, and DAE, in both the pre-
training and the fine-tuning stages, which is denoted as All PT-and-FT. On the other
hand, we include the small transformer architecture, which is a base architecture with
three encoder layers and one decoder layer, named base-Enc3Dec1. During the training
process, we set the max-token of a batch to 2,048 and 8,192 for extremely low-resource
and low-resource translation tasks, respectively, and stop training when the model no
longer reduces the validation loss within 10 times.

4.2 Results

The experiment results are presented in Tables 4a and 4b. Our pipelines demonstrate
consistent improvement over the base model and existing methods in the case of
extremely low-resource translation tasks. For low-resource tasks, the pipeline achieves
competitive results on EN-DE 100k and EN-TR, and comparable performance on EN-
RO. These findings align with our observations and demonstrate the effectiveness of our
pipelines on various bitexts and translation pairs, including distant language pairs such
as EN-AR and EN-ZH. On the one hand, the small transformer model of base-Enc3Dec1
obtains better performance in EN-RU, EN-AR, and EN-ZH translation tasks compared
with the base model, but they fail to leverage BT synthetic data since the model capacity
is too limited to learn these abundant noisy sentence pairs. On the other hand, the small
translation model also shows poor performance in extremely low-resource translation
tasks as the base model, which highlights the challenge of data scarcity.

In general, for extremely low-resource translation tasks, the base model achieves
a BLEU score of less than 5, except for the EN-FR language pair, as well as the small
translation models. This highlights the challenge of training a translation model with
only a small number of training pairs. To address this challenge, we first use the joint
objective of MLM+CLM+DAE to train the model on monolingual data for better model
initialization, thereby improving its abilities in source language understanding, bilin-
gual word alignment, and generating fluent sentences. Another intuitive method is to
enrich the data scale for extremely low-resource tasks. However, the use of BT synthetic
data in these settings has a limited impact on translation quality, as demonstrated in
Observation 7. As an alternative, incorporating additional target-side sentences through
multi-task learning with a CLM objective during the fine-tuning stage has been shown
to lead to improved performance in extreme settings, as discussed in Observations 5
and 9. Therefore, in Table 4b, our pipelines obtain impressed translation quality for both
close and distant translation pairs, except that the method of DAE with BT data obtains a
slight improvement of 0.1 for the close translation task, EN-FR. Additionally, the models
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Table 4
Results of our pipelines on multiple datasets. The bitext size of extremely low-resource is 10k
and that of low-resource is 100k if not specified, respectively.

Method
Extremely Low-Resource Low-Resource

EN-DE 5k EN-RO 5k EN-DE 10k EN-RO 10k EN-DE 100k EN-TR EN-RO
base 1.04 3.50 1.63 4.80 13.10 10.00 33.90

+BT 1.39 7.10 2.85 8.20 19.05 12.60 35.00
Small Transformer Model

base-Enc3Dec1 0.70 4.50 1.74 4.90 10.78 5.40 27.70
+BT 0.00 2.90 0.00 1.80 0.00 3.40 2.90

Existing Pre-Training Method
MLM 1.95 6.90 3.59 13.30 15.94 11.60 34.90

+BT 2.89 9.10 5.30 13.10 18.80 13.10 38.40
DAE 12.84 25.20 14.55 27.60 17.46 11.10 35.60

+BT 13.74 26.20 15.71 29.10 20.50 13.30 38.90
Combine All Techniques

All PT-and-FT 11.85 18.55 14.90 19.95 14.93 12.21 29.10
+BT 12.56 18.08 13.48 19.82 17.97 12.56 31.00

Our Pipelines 14.59 27.50 16.22 30.40 20.52 13.90 38.90

(a) The BLEU score on WMT datasets.

Method
Extremely Low-Resource Low-Resource

EN-FR EN-RU EN-AR EN-ZH EN-FR EN-RU EN-AR EN-ZH
base 6.30 2.90 1.20 2.80 26.70 12.20 5.50 13.40

+BT 11.20 5.00 2.80 6.60 31.60 18.50 11.70 19.90
Small Transformer Model

base-Enc3Dec1 9.50 2.90 0.70 1.20 26.00 16.50 9.90 15.40
+BT 8.80 2.50 0.60 1.40 25.30 11.10 8.50 13.10

Existing Pre-Training Method
MLM 13.40 5.00 2.20 5.90 31.50 20.00 11.50 18.90

+BT 16.60 8.20 5.60 10.40 32.60 22.00 13.80 22.00
DAE 26.50 13.70 8.50 10.20 33.00 21.10 12.60 19.90

+BT 26.90 14.20 8.70 12.50 33.10 23.50 16.40 22.40
Combine All Techniques

All PT-and-FT 24.10 12.80 7.20 10.70 34.00 23.30 17.50 24.80
+BT 24.00 12.90 6.80 10.50 34.60 23.50 13.60 21.60

Our Pipelines 26.80 16.50 9.40 16.70 34.90 23.70 18.10 23.80

(b) The BLEU score on OPUS-100 sampled datasets.

of Combine All Techniques present moderate results compared with other methods, which
demonstrates the reasonableness of our designed pipelines. Additionally, MLM does
not significantly improve the performance of extremely low-resource tasks, with a BLEU
score of 3.59 in En-De 10k and 13.30 in En-Ro 10k, while DAE achieves a score of 14.55
in En-De 10k and 27.60 in En-Ro 10k. The performance gap between MLM and DAE
indicates that relying solely on source monolingual data to improve translation quality
in extreme settings is insufficient.

For low-resource machine translation tasks, incorporating both BT synthetic data
and golden parallel data into the training process generally results in improved transla-
tion quality. This supports the finding of Observation 7 that the quality of BT data tends
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to be improved with an increase in bitext size. Therefore, except for the extremely low-
resource settings, BT is an effective method for improving translation quality generally,
although it requires an additional reverse translation model for data synthesis. Exper-
imental results demonstrate that as the bitext size increases, the performance gaps be-
tween our proposed pipelines and existing methods tend to diminish, in agreement with
the prior research which suggests that pre-training does not significantly contribute to
translation performance in high-resource settings (Liu et al. 2020). It is worth noting that
the model of ALL PT-and-FT obtains an impressive result of 24.80 BLEU score in EN-ZH
low-resource translation task without additional training with BT synthetic data, which
reveals the potential of the combination of MLM, CLM, and DAE techniques.

Table 4b presents the results of evaluating both similar and distant translation
pairs. The results demonstrate the efficacy of our pipelines on distant translation pairs,
particularly in extreme settings. Specifically, our pipelines improve by 2.3, 0.7, and
4.2 BLEU score for the EN-RU, EN-AR, and EN-ZH translation tasks of 10k bitext
size, respectively. Despite the marginal differences in alphabets between English (EN),
Russian (RU), Arabic (AR), and Chinese (ZH), our pipelines still achieve remarkable
translation performance, demonstrating the generalization capability of our pipelines.

4.3 Analysis

During the training progress, the models are validated every 50 updates, and Figure 4
shows the validation loss with the update steps for each model in Table 4. We find

Figure 4
Training curves with update steps. In each sub-figure, the first and the second rows show the
models training without and with BT data, respectively. Each column corresponds to each
translation task in Table 4 in order, respectively.
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that (1) the models only trained with extremely low-resource datasets converge quickly
and easily suffer from the overfitting problem; (2) the models pre-trained with the
MLM+CLM+DAE joint objective generally converge to a stage with a lower validation
loss and the DAE pre-trained models take the second place. These phenomena highlight
that the model initialization is crucial for improving the extremely low-resource and
low-resource translation tasks. Also, as the dataset size increases, the models converge
to a certain range. For example, the models of EN-RO generally reach around 5 of
validation loss in Figure 4a. This echoes the finding that the influence of the pre-training
methods is on the ebb as the dataset size increases.

5. Conclusion

In this article, we undertake a systematic investigation of the effects of existing methods
such as Back-Translation (BT), Masked Language Modeling (MLM), Causal Language
Modeling (CLM), and Denoise Autoencoding (DAE) through three fine-grained probing
tasks that assess source language understanding, bilingual word alignment, and trans-
lation fluency. The outcomes of the probing tasks inform that MLM, CLM, and DAE
are complementary to each other in improving the linguistic properties of a translation
model. Then, we analyze the impact of Pre-Training, Back-Translation, and Multi-Task
Learning on translation tasks of various sizes. Results show that multi-task fine-tuning
further improves both the extremely low-resource task and low-resource tasks. With the
same model capacity and data scale, we summarize nine observations about how these
existing methods affect the translation model and provide fine-grained analysis. Our
pipelines show an effective improvement for resource-poor translation tasks, offering
an alternative to relying solely on costly parallel data. Inspired by recent research (Xue
et al. 2021; Muennighoff et al. 2022; Touvron et al. 2023), we would like to extend our
work to the scenario with large-scale model capacity and data for improving the quality
of the translation model for both low-resource and high-resource translation tasks.

Appendix A: Detailed Information of SentEval

The SentEval probing tasks include 10 classification tasks for English sentences. All ten
datasets contain 100k training instances, 10k validation instances, and 10k test instances.
The details could be found on the official Web site;7 we simply list them as follows:

1. Sentence Length (Seln): All sentences have been binned into 6 possible
categories with lengths ranging in the following intervals: −0: (5–8), 1:
(9–12), 2: (13–16), 3: (17–20), 4: (21–25), 5: (26–28). The classification
model is trained to predict the length of a given sentence.

2. Word Content (WC):
The targets are 1,000 lower-cased words. Then the classification model is
trained to predict which word the given sentence contains among these
1,000 words.

7 https://github.com/facebookresearch/SentEval/tree/main/data/probing.
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3. Tree Depth (TDep): The classification model is asked to predict the
maximum depth of the sentence’s syntactic tree. The tree depth range is
from 5 to 12, 7 classes in total.

4. Top Constituents (ToCo): This task requires the classifier to predict the
sentence structures, including 19 common structures and one OTHER
class.

5. Bigram Shift (BShif): This is a binary classification task, which requires
predicting whether two consecutive words within the sentence have
been inverted.

6. Pas Present (Tense): This requires the model to predict whether the main
verb is present or past tense.

7. Subj Number (SubN): A binary classification task to predict the number
of the subject of the main clause. The first class means singular, while the
second class means plural or mass.

8. Obj Number (ObjN): A binary classification task to predict the number of
the object of the main clause. Class labels are the same as the task of
SubN.

9. Odd Man Out (SoMo): This is a binary classification task to predict
whether a noun or a verb of a sentence was replaced with another form.

10. Coordination Inversion (CoIn): This binary task asks whether the order
of two coordinated clausal conjoint has been inverted.

Appendix B: Detailed Results of Bilingual Word Alignment

The detailed results are listed in Table B.1. Accordingly, MLM and DAE consis-
tently improve the alignment performance for both data settings, while CLM shows
a slight side effect for EN-DE 100k. As a result, the method of MLM+DAE slightly
improves the BEST AER score by removing the CLM objective, but the joint objective of
MLM+CLM+DAE still demonstrates the lowest AVG AER.
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Table B.1
Alignment Error Rate (AER) on English-to-German (Vilar, Popović, and Ney 2006). Numbers 1
to 6 indicate the decoder layer and so as others. “AVG” and “BEST” are average AER and best
AER across all layers.

Method
AER(%)

1 2 3 4 5 6 AVG. BEST
base 93.5 94.6 94.2 82.6 50.4 47.5 77.1 47.5
+BT 89.0 87.8 84.7 55.3 42.2 45.7 67.6 42.2
MLM 92.3 86.2 84.2 48.4 41.7 46.6 66.6 41.7
CLM 94.3 94.6 93.0 84.6 64.3 48.4 79.9 48.4
DAE 86.6 88.9 74.6 48.4 42.2 43.9 64.1 42.2
MLM+DAE 85.4 87.7 58.6 49.2 41.1 45.4 61.2 41.1
MLM+CLM+DAE 88.4 86.0 49.5 47.5 41.2 44.1 56.1 41.2

(a) Results of models trained on EN-DE 100k

Method
AER(%)

1 2 3 4 5 6 AVG. BEST
base 93.8 94.5 93.7 84 65.7 60.8 82.1 60.8
+BT 88.5 87 84.3 55.7 41.7 47.3 67.4 41.7
MLM 90.4 86.4 81.6 56.9 55.3 55.5 71.0 55.3
CLM 93.2 94.4 92.0 84.2 61.2 49.7 79.1 49.7
DAE 84.2 87.8 74.7 47.4 42.0 46.2 63.7 42.0
MLM+DAE 85.1 86.0 61.1 47.1 39.8 46.8 61.0 39.8
MLM+CLM+DAE 84.5 84.7 59.5 47.5 40.1 42.9 59.9 40.1

(b) Results of models trained on EN-DE 200k
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