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Despite the success of Transformer-based language models in a wide variety of natural language
processing tasks, our understanding of how these models process a given input in order to
represent task-relevant information remains incomplete. In this work, we focus on semantic
composition and examine how Transformer-based language models represent semantic infor-
mation related to the meaning of English noun-noun compounds. We probe Transformer-based
language models for their knowledge of the thematic relations that link the head nouns and
modifier words of compounds (e.g., KITCHEN CHAIR: a chair located in a kitchen). Firstly,
using a dataset featuring groups of compounds with shared lexical or semantic features, we find
that token representations of six Transformer-based language models distinguish between pairs
of compounds based on whether they use the same thematic relation. Secondly, we utilize fine-
grained vector representations of compound semantics derived from human annotations, and find
that token vectors from several models elicit a strong signal of the semantic relations used in the
compounds. In a novel “compositional probe” setting, where we compare the semantic relation
signal in mean-pooled token vectors of compounds to mean-pooled token vectors when the two
constituent words appear in separate sentences, we find that the Transformer-based language
models that best represent the semantics of noun-noun compounds also do so substantially
better than in the control condition where the two constituent works are processed separately.
Overall, our results shed light on the ability of Transformer-based language models to support
compositional semantic processes in representing the meaning of noun-noun compounds.
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1. Introduction

One rapidly growing strand of Natural Language Processing (NLP) research is that
of determining whether neural language models encode certain linguistic properties,
and, if so, understanding how these properties are represented. This goal has brought
together a variety of researchers and analysis techniques from fields such as machine
learning, linguistics, psychology, and neuroscience (Linzen 2019; Abnar et al. 2019;
Gauthier and Levy 2019; Anderson et al. 2021). With the advent of Transformer-based
language models (Vaswani et al. 2017) such as BERT (Devlin et al. 2018), there has been
a surge of interpretability research on this type of architecture (in particular, the study of
BERT and related models has gained much popularity in a wave of research sometimes
referred to as “BERTology” [Rogers, Kovaleva, and Rumshisky 2021]). To date, however,
most of the research into the interpretation of Transformer-based language models
has focused on their syntactic knowledge, and while there have been investigations
into their semantic capabilities (e.g., Ettinger 2020; Tenney, Das, and Pavlick 2019),
our understanding of how Transformers process semantic information remains largely
incomplete. In contrast to syntax, where explicit representations of the grammatical
structures of interest are available, a challenge faced in probing Transformer-based
language models for semantics is finding suitable experimental frameworks for investi-
gating processes relating to semantic representation and semantic composition.

In this work, we examine the extent to which Transformer-based language models
have implicit knowledge of the thematic relations used in noun-noun compounds and
explore how this information is encoded in the intermediary vector representations
of these models. To this end, we perform layer-wise representational analysis on six
different types of Transformer-based language models, covering a range of training
objectives, training data, and total number of parameters.

1.1 Noun-noun Compounds and Semantic Composition

Noun-noun compounds are simple two-word phrases made up of a head noun that is
modified by a modifier word. For example:

1. PUBLIC HOUSE

2. BRICK HOUSE

3. COUNTRY HOUSE

Despite their simple and consistent syntax, the meaning of the two words in a com-
pound can combine to form a meaning for the phrase as a whole in semantically diverse
ways. An interesting feature of noun-noun compounds is that, despite the semantic
relation between the head noun and modifier word not being explicitly present in the
phrase, their meaning is usually completely transparent to humans, even when the
compound is a novel construction (van Jaarsveld and Rattink 1988). Following linguistic
analysis of such compounds, we can describe their meaning with a taxonomy of thematic
relations; that is, PUBLIC HOUSE is a house for the public, a BRICK HOUSE is a house made
of brick, and a COUNTRY HOUSE is a house located in the country (Levi 1978; Gagné and
Shoben 1997). Other approaches to compound taxonomies include Lees Robert (1960)
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(an early proponent of the idea that there are a fixed number of relations for a particular
head-modifier word combination), Downing (1977) (who in contrast emphasizes that
the relation that describes a compound can take on any interpretation and is determined
pragmatically), and more recent work such as Tratz and Hovy (2010), who create a novel
taxonomic inventory by integrating several previous schemes. An alternative approach
to using a taxonomy of thematic relations to interpret compounds is the dimension-
based approach (Murphy 1988), which views the head noun as a schema defining a set
of dimensions, each with a set of possible values. In this view, the modifier word will
then fill one of these dimensions during the process of conceptual combination (Gagné
and Shoben 1997). The ability of a computational model to relate the features of the
two constituent words of the larger expression such that the properties of the resulting
compound representation correlate with human judgment values would constitute a
demonstration of semantic compositionality (Mitchell and Lapata 2010), although we
would not expect the operations that would enable such a process in neural networks
to be encoded in a set of systematic rules (Baroni 2020). In any case, we consider
noun-noun compounds to be well-suited for investigating semantic representation and
conceptual composition in Transformer-based language models—indeed, in the psy-
cholinguistics literature, the interpretation of noun-noun compounds has proven to be
a lively research area for both theories of concept representation and conceptual com-
position (Gagné and Shoben 1997; Murphy 2002; Estes and Hasson 2004; Devereux and
Costello 2012; Lynott and Connell 2010; Maguire et al. 2007; Westerlund and Pylkkänen
2017).

In the NLP context, work on the computational interpretation of noun-noun com-
pounds has involved classifying noun-noun compound semantic relations using a
variety of features, such as semantic class information and various syntactic features
(Girju et al. 2004), and lexical similarity and co-occurrence information (Ó Séaghdha
and Copestake 2007; Devereux and Costello 2005). Subsequent work by Tratz and
Hovy (2010) used surface features of word forms for automatically interpreting noun-
noun compounds. Work by Reddy, McCarthy, and Manandhar (2011) found evidence
that distributional word-space models can predict human compositionality judgments
of noun-noun compounds. Other innovations in noun-noun compound interpretation
include utilizing paraphrase models (Shwartz and Dagan 2018), using transfer learning
and multi-task learning (Fares, Oepen, and Velldal 2018), or framing this problem as a
verb paraphrasing task (Nakov 2019). More recently, Shwartz and Dagan (2019) demon-
strated the power of using contextualized word embeddings (including Transformer
representations) for noun-noun compound relation classification. While previous au-
thors have generally aimed at using state-of-the-art NLP models and machine learning
techniques to explore the limits of noun-noun compound relation classification, we use
noun-noun compounds as a means of interpreting how Transformer-based language
models build representations of the semantic relationships that exist between the con-
stituent words.

1.2 Representational Similarity Analysis

Our analyses make use of Representational Similarity Analysis (RSA), a multivariate
statistical methodology first developed in imaging neuroscience (Kriegeskorte, Mur,
and Bandettini 2008). RSA allows for the comparison of different kinds of multivariate
data, enabling us to compare representational vectors with both different dimension-
alities (e.g., comparing two models with different hidden vector sizes) and wholly
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disparate modes of representation (e.g., comparing language model token vectors to
a set of linguistic features). In order to compare two sets of n representations, we first
construct a representational dissimilarity matrix (RDM) for each of the two models that
captures the pair-wise dissimilarity between all of the stimuli (typically computed as
1− the Pearson’s correlation between each of the representations), producing one n× n
matrix for each of the two models. We can then take a second-order correlation between
the two RDMs to measure the similarity between the two models’ internal dissimilarity
structure given our set of stimuli. This approach to representational analysis has the
advantage of capturing patterns in distributed information that may not necessarily be
encoded in a particular dimension of a token vector (Nili et al. 2014). A broad overview
of how RSA is integrated into our analysis pipeline is given in Figure 1.

1.3 Research Questions and Predictions

In this work we target two primary theoretical research questions:

1. To what extent do Transformer-based language models encode
noun-noun compound relational semantics? We consider whether
token vectors in Transformer models can broadly distinguish between
semantic classes of noun-noun compounds (e.g., H made of M versus H
located in M), and whether we can recover fine-grained information about
all possible relations between the head noun (H) and modifier (M) (as
informed by human judgments of the possible semantic interpretations
of the compound).

2. How is thematic relation information encoded in Transformer model
representations? If Transformer models can to some extent represent
relational semantics between the head and modifier noun, we wish to
understand how this information is encoded within the token vectors of
the model. In particular, we identify the three following areas of
investigation: (1) whether this relational representation relies on
memorizing distributional co-occurrence information (as opposed to a
step-wise dynamic process where head and modifier nouns are
contextually composed and relational information gradually emerges),
(2) whether this information is localized within a particular token span
within the compound (i.e., in the head or modifier token vectors, as
opposed to a broader context), and (3) whether this information is
localized to a particular layer or set of layers.

Given the growing body of research that demonstrates the ability of such models to
encode rich linguistic information on natural language input, we expect that English
and multilingual Transformer models would be able to produce relation represen-
tations that broadly distinguish between classes of English noun-noun compounds.
Additionally, we also predict that these models can to some extent represent fine-
grained relational-semantic information about noun-noun compounds such that they
align with human ratings of the detailed and multifaceted relationship between the
head and modifier noun, but that this fine-grained knowledge may vary across model
architectures.

52



Ormerod et al. Noun-Noun Compound Semantics in Language Models

Compute second-order
correlation between two RDMs

Correlation = 0.67

BRICK HOUSE
Layer 1

Layer 12 0.31   0.11   0.22   . . .   0.69   -.19   0.79

0.33   0.16   0.28   . . .   0.73   -.42   0.74
. . . 

Layer 1

Layer 12

. . . 

PUBLIC HOUSE

-.17    0.71   0.16   . . .   0.82   -.01   0.75

0.12   0.84   0.13   . . .   0.82   -.02   0.71

Compute pair-wise dissimilarity for each
compound given a particular model/layer

(calculated as 1 - Pearson's correlation)

Token representations in Transformer
model by layer

(mean-pooled across head noun, modifier
noun or the entire compound)

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

PUBLIC HOUSE

BRICK HOUSE

HEN HOUSE

. . .

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

PUBLIC HOUSE

BRICK HOUSE

HEN HOUSE

. . .

Compute pair-wise dissimilarity for each
compound based on semantic property
(i.e. we consider compounds as maximially

dissimilar if they do not share their relation type)

PUBLIC HOUSE,
HOUSE FOR PUBLIC ≠

BRICK HOUSE,
HOUSE MADE OF BRICK

Model of semantic properties of compounds
(e.g. whether two compounds have the same

relation type)

Compounds
PUBLIC HOUSE,
BRICK HOUSE,

. . .

Figure 1
Overview of our feature extraction and Representational Similarity Analysis pipeline.
Here we show the procedure for calculating the RDM for the Relation Category experiments
(Experiments 1a and 1b), where compounds are counted as maximally dissimilar if they do not
share a primary thematic relation. The second-order correlation between the RDMs measures the
degree to which the given model of compound semantics is reflected in the Transformer
representations.
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The question of the extent to which Transformer models can perform compositional
tasks is a contested area within the interpretability literature (Ontanon et al. 2022). While
there are several studies that demonstrate the compositional ability of Transformer
models in controlled settings (Murty et al. 2022; Csordás, Irie, and Schmidhuber 2021),
other work has called into question the ability of these models to achieve nuanced
semantic composition (Yu and Ettinger 2021), or have suggested that the success of such
models to interpret compounds may depend on the memorization of token distribution
information (Li, Carlson, and Potts 2022; Coil and Shwartz 2023). In the most relevant
work to the present study, Yu and Ettinger (2020) found little evidence of compositional
semantics (using a dataset of two-word phrases) in a range of Transformer models.
Given this body of literature, we predict that the Transformer model that best encodes
relational information will be able to compose head and modifier words to produce
representations that capture broad relational information (as opposed to rich fine-
grained information about additional facets of the head-modifier semantic relation).
With respect to the question of whether relational information will be localized in the
head noun tokens or modifier noun tokens (or distributed across several words), we
are interested in relating the interpretation of noun-noun compounds in Transformer
models to the psychological literature, which suggests that the ease of interpretation
of a compound is predicted by the association of the modifier word (but not the head
word) with the relation type (Gagné 2001; Devereux and Costello 2006). Nevertheless,
we expect that this information will always be to some extent distributed over both the
head and the modifier word, as the attention mechanism in Transformer models allows
information to flow from each token vector in a particular layer to all token vectors in
the subsequent layer. With respect to the question of where the relational information
will be localized, we expect that such semantic information will be encoded in later
layers, following work such as Tenney, Das, and Pavlick (2019) that shows that high-
level semantic information typically surfaces in later layers of Transformer models.

1.4 Contributions

We find that all layers of the four monolingual English-language models produce rep-
resentations of compound relations that more strongly correlate with human semantic
judgments when head and modifier nouns are concurrently processed as a compound,
compared with the baseline multilingual and Japanese models. To our knowledge, these
experiments are the first to show that Transformer-based language models meaning-
fully encode implicit relational semantic knowledge about the meaning of noun-noun
compounds. Across the series of experiments, the results suggest that the Transformer-
based language models that encode the strongest representation of thematic relations
dynamically integrate their knowledge of the intrinsic properties of the head and mod-
ifier concepts in order to encode the semantic relationship between these words, rather
than only relying on the lexical information of the component words in isolation, or
information about concept-relation frequency.

2. Materials

We use two datasets to explore the representation of English noun-noun compounds in
Transformer-based language models, covering 30 Transformer models across 6 types
of models (including 25 instantiations of the same Transformer model trained with
different randomized weight initializations).
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2.1 Data

The first dataset (Gagné 2001) is made of 300 English noun-noun compounds that are
organized into 60 groups of five compounds each. The dataset was originally compiled
in order to investigate lexical and relational priming in psycholinguistic experiments
on human understanding of noun-noun compounds. Using a taxonomy of 16 thematic
relation types, each compound is annotated with the most appropriate thematic relation
for describing the semantic relationship that exists between the head noun and the
modifier (Gagné and Shoben 1997). Each group of five compounds is composed of a
target compound followed by four compounds that feature (a) either a different head or
modifier word from the target compound and (b) either the same or a different relation
between the head noun and modifier word from the target compound, covering four
different experimental conditions (see Table 1). Within each group, each modifier and
head occurs with a thematic relation that is highly frequent with the modifier (e.g., the
modifier MOUNTAIN often occurs with a located in relation, as in MOUNTAIN BREEZE
but rarely occurs with an about relation, as in MOUNTAIN MAGAZINE). In this way, the
occurrence of relation type with the individual modifier and head nouns is controlled
in the experimental design (see Gagné [2001] for details).

The taxonomy of 16 thematic relation types utilized by Gagné (2001) is a useful, but
rather coarse-grained, representation of the semantics of the relation instantiated for
particular compounds. In many cases, several relation types may capture the meaning
of a given compound, to varying degrees. We therefore also make use of a dataset
of 60 compounds (a subset of the 300 compounds described above) where 34 partici-
pants rated the appropriateness of 18 different thematic relations for every compound
(Devereux and Costello 2005).

These relation types and the number of total mentions for each of the types are
presented in Figure 2. Compounds for which the semantic link between the head
word and modifier word are similar (e.g., PROPANE STOVES and GAS LAMPS) tend to
have similar distributions of appropriateness ratings across the thematic relations (see
Devereux and Costello [2005] for details), and the thematic relation ratings can therefore
be utilized as 18-dimensional vector representations of the relational meaning used in
compounds. Relation vectors for three compounds are presented in Figure 3. Here we
observe that PROPANE STOVES and GAS LAMPS are close together in the relation space
(consistent with the “H uses M as fuel” relationship found in both compounds), whereas
PROPANE STOVES and RAIN DROPS have very different relation vectors.

For all compounds in the datasets described above, we construct a corpus of sim-
ple, neutral sentences in the form of “It is a {compound}” for singular compounds (e.g.,

Table 1
Five compounds that make up one of the 60 compound groups in the Gagné (2001) noun-noun
compound dataset, used in our Relation Category RSA experiments.

Modifier (M) Head (H) Experimental condition Thematic relation
mountain breeze Target H LOCATED M
kitchen breeze Same head noun, same relation H LOCATED M
storm breeze Same head noun, different relation H DURING M
mountain cabin Same modifier, same relation H LOCATED M
mountain magazine Same modifier, different relation H ABOUT M
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Figure 2
Distribution of relation types across the 60 compounds (Devereux and Costello 2005) dataset.
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Figure 3
Sample relation vectors, based on the number of participants selecting each relation for each
compound, for three compounds given in the Devereux and Costello (2005) dataset. GAS LAMP
and PROPANE STOVE are close in this 18-dimensional space, reflecting the semantic similarity of
the relational link (both stoves and lamps contain gas/propane that they use as fuel), while both
compounds share relatively little overlap with RAIN DROPS.

“It is a wood stove”), “It is {compound}” for mass noun compounds (e.g., “It is solar
power”) and “They are{compound}” for plural compounds (e.g., “They are summer
clothes”). The motivation for using compounds in such minimalistic sentences was
to present the language models with naturalistic sentences as they would encounter
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in training, while at the same time minimizing variability due to extrinsic context.
As all compounds from the Devereux and Costello (2005) relation vector dataset are
found in the 300 compound dataset, we use these sentences in both data settings. For
our compositional analyses (the Relation Category and Processing RSA experiment
[Section 3.3], the Relation Vector and Processing RSA experiment [Section 3.5], and
the Compositional Probe experiment [Section 3.6]), we construct two similar sentences
for all compounds using the head or modifier nouns in isolation; for example, the
compound WAR RIOTS yields the sentences “It is a war” and “They are riots”. After
creating the corpus of minimalistic sentences, we wished to evaluate whether these
constructions are particularly implausible (which could limit the generalizability of our
findings) and check whether there are large disparities in sentence plausibility across
different compound relations (which could potentially introduce a confound in our
analysis). To this end, we used GPT-2 (Radford et al. 2019) (an autoregressive Trans-
former model) to calculate the perplexity of each sentence before measuring whether
perplexity significantly correlated with relation magnitude for any of the relation vector
dimensions. We measured an average perplexity of 267.12, compared to an average
perplexity of 774.51 across sentences of similar lengths (i.e., between 5 and 14 words
long) in the WikiText-2 dataset (Merity et al. 2016).1 We then measured the Pearson’s
correlation between the perplexity of each sentence and the magnitude of the relation
for each of the 18 dimensions in the relation vector, finding no significant correlation
between any relation type and the likelihood of sentences in our corpus.

2.2 Models

In this work we considered six different Transformer-based language models (Vaswani
et al. 2017). We follow the BlackboxNLP 2020 Shared Interpretation Mission (Alishahi
et al. 2020) in the choice of models: BERT (bert-base-cased)2 (Devlin et al. 2018),
BERT-Japanese (bert-base-japanese)3, RoBERTa (roberta-base) (Liu et al. 2019), Distil-
RoBERTa (disilroberta-base) (Sanh et al. 2020), XLM (xlm-mlm-xnli15-1024) (Lample
and Conneau 2019), and XLNet (xlnet-base-cased) (Yang et al. 2019). All of the Trans-
former models we target are masked language models (although xlnet-base-cased has
been exposed to an autoregressive pre-training regime). For our BERT analysis we
have made use of the MultiBERTs resource (Sellam et al. 2021), which enables us to
carry out experiments on 25 different versions of the bert-base-uncased model that have
been trained with different starting weight initializations and different shuffling of the
training data, allowing for a more robust analysis of the representational trends in BERT-
style models. These models were chosen to assess whether our analyses generalize over
a diverse range of Transformer-based language model design choices, including mono-
lingual/multilingual data, model size, and choice of training objective and training
data. Furthermore, these models have also been used by the most relevant studies to the
current work (Yu and Ettinger 2020, 2021) enabling a more direct comparison between
our approach to probing Transformer models for compositional semantics and theirs.

1 Perplexity was calculated for each sentence separately before taking the average. When perplexity is
calculated using the common sliding-window strategy (using preceding sentences to predict tokens), the
average perplexity is 25.17 across the WikiText-2 dataset. In the sliding-window setting the model is able
to leverage a large amount of contextual information to predict the recurring template structure, which
would produce an extremely low perplexity score for our generated sentences.

2 Model names in the HuggingFace library are given in parentheses.
3 https://github.com/cl-tohoku/bert-japanese.
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A priori, we hypothesize that the English-specific models should be best at representing
the relation semantics of English noun-noun compounds, and the BERT-Japanese model
is primarily included as a control. In all experiments, we do not fine-tune the models,
as we aim to evaluate each model’s capacity for semantic relation representation given
its standard training on a general domain language modeling task. All models were
accessed using the Hugging Face library (Wolf et al. 2020).

3. Experiments and Results

We design a variety of experiments in order to assess whether the six Transformer-
based language models encode the semantic relations between the head and modifier
words in English noun-noun compounds in their token vector representations. The
design of these experiments focuses on examining differences across models, across
layers, and across the constituent words of the compounds. In the Relation Category and
Relation Vector experiments (Sections 3.2, 3.3, 3.4, and 3.5), we use RSA (Kriegeskorte,
Mur, and Bandettini 2008) to measure the degree to which patterns of activation in the
models reflect the thematic relation information corresponding to the interpretation of
compounds. In the RSA analyses, we consider both a “course-grained” representation
of thematic relation information, where similarity is based on whether the thematic
relation taxonomic label is the same or different across compounds (Figure 1), and a
“fine-grained” representation, where a measure of pairwise similarity between relation
vectors in relation space is used to capture similarity of relational meaning. In the Com-
positional Probe experiment (Section 3.6), we use linear regression probing to measure
the decodability of the fine-grained relation vectors given different data ablation con-
ditions. In our experiments we provide the model with a minimal sentence containing
a noun-noun compound, and extract mean-pooled token vector representations across
particular token spans at each layer. For the Relation Category RSA (Section 3.2) and
the Relation Vector RSA (Section 3.4) experiments, we mean-pool across (1) tokens in the
head noun, (2) tokens in the modifier noun, and (3) all of the tokens in both the head and
modifier noun. In other experiments we only consider mean-pooled representations of
tokens in the entire compound. In all of our results figures, we report an average value
for the MultiBERTs models and show the standard error over the range of results as an
error bar. Significant differences for the MultiBERTs models in the Relation Category
and Processing Condition experiment, the Relation Vector and Processing Condition
experiment, and the Compositional Probe experiment were checked using paired t-tests.

3.1 Experimental Design and Controls

In any analysis of whether and how a particular aspect of linguistic knowledge is en-
coded in a language model, a key consideration is whether the analysis is sensitive to
experimental confounds and other spurious cues that correlate with the phenomena
of interest (Yu and Ettinger 2020). In the case of analyzing models for semantic com-
position, a particular issue is the potential correlation between the lexical forms and
the relational information describing the semantics of composition (for example, the
compounds MOUNTAIN STREAM and MOUNTAIN CABIN both use a located in thematic
relation, but they also both contain the modifier MOUNTAIN). In this work, therefore,
we make use of three types of experimental control, in order to separate semantic com-
position from the representation of lexical information. Firstly, we make use of a psy-
cholinguistic experimental design, in which the thematic relations used in the analyzed
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compounds are counterbalanced with the modifier and head words appearing in the
compounds. Secondly, we include a multilingual language model and a Japanese lan-
guage model as controls in the analysis, on the hypothesis that such models, compared
to English-language models, will not adequately represent the compositional meaning
of English noun-noun compounds even if they are sensitive to word overlap across
compounds. Finally, we also construct a novel “compositional probe” that measures the
difference in semantic relation representation when a compound is processed in a single
sentence versus when the head and modifier nouns are processed in separate sentences.

3.2 Experiment 1a: Relation Category RSA
3.2.1 Overview. In the Relation Category RSA experiment we use RSA to investigate
whether representations extracted from the Transformer-based language models distin-
guish between noun-noun compounds based on whether pairs of compounds share
the same thematic relation type. For this experiment we use the Gagné (2001) 300
compound relation group dataset. We only consider compound pairs within each of the
60 groups, following the experimental design of the Gagné (2001) study. The 5×5 RDM
for each group encodes whether the same or different thematic relation is used for each
pair of compounds in the group (Figure 4). As two of the compounds in each group
are marked only as differing in thematic relation from the target compound (e.g., the
STORM BREEZE – MOUNTAIN MAGAZINE pair in Figure 4), we do not include this pair
of compounds, as these experimental conditions are not compared in the Gagné (2001)
experimental design.

In the Relation Category RSA experiment, we present sentences to the model that
contain each compound (e.g., “They are war riots”). The data for the experimental
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Figure 4
Representational Dissimilarity Matrix (RDM) for same/different thematic relation taxonomic
category for one compound group in the Gagné (2001) dataset. The 300 experimental items
are divided into 60 groups of noun-noun compounds with this similarity structure. In our
experiments, we ignore the relation pairs marked in gray as we have no ground-truth similarity
information for this compound pair (these two compounds are classified as not having the same
relation as the primary compound of the group (i.e., mountain breeze) and as such may or may
not differ between each other).
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RDMs that we consider is the mean-pooled token spans for the tokens that comprise
(1) the modifier word, (2) the head noun, and (3) the whole compound. We construct
three experimental RDMs for each layer of each model by taking the cosine similarity
between all pairs of noun-noun compounds for the three choices of representation. For
each 5×5 compound group RDM, we measure the second-order similarity between
each experimental RDM and the ground-truth RDM using Pearson’s correlation (with
the correlation restricted to the upper-triangular part of the matrix, as is standard in
RSA). The strength of this second-order correlation reflects the degree to which the
pattern-information of the model activation vectors reflects the representational content
encoded by the ground-truth RDM (in this case, the identity of the thematic relation
category used in each compound). We report the average correlation across all 60
compound groups for each layer of each model. This design allows us to measure
the relative strength of the coarse-grained thematic relation signal across a variety of
different models, layers, representation types, thematic relations, and compounds.

3.2.2 Results. The results for the Relation Vector RSA experiment are given in Figure 5.
Overall, we generally see positive correlations between the ground-truth RDMs and
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Figure 5
Results of the Relation Category RSA experiment (Section 3.2). Average correlation between
the same thematic relation ground-truth RDM and experimental RDMs constructed using
mean-pooled token-span representations for 6 types of Transformer-based language models
(300 sentences, correlation averaged across 60 compound groups).
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the activation RDMs; in particular, the four English-language models consistently show
relatively high correlations across all layers, indicating that they are sensitive to the
representational geometry captured by our ground-truth thematic relation category
RDM. The two models that are not English monolingual models (bert-base-japanese and
xlm-mlm-xnli15-1024) achieve lower correlations than the other four models, although
xlm-mlm-xnli15-1024 begins to produce more strongly correlated representations of the
coarse-grained thematic relation signal in its final few layers. While bert-base-japanese
acts as a control model (reflected in its relatively low correlation overall), this model
was still able to consistently achieve correlations greater than zero using head-noun
and modifier noun representations. This result may suggest that the relatively small
amount of English language content encountered in the bert-base-japanese training data
(i.e., Japanese Wikipedia articles) could be sufficient to learn to represent at least some
information about English semantic categories. However, the mean-pooled compound
representation does not tend to correlate much more strongly with the coarse-grained
thematic relation RDM than the modifier and head representations for the majority
of the layers. This may suggest that at a given layer the head and modifier token
representations encode more information relevant to the primary thematic relation
than does the entire compound, or that the mean-pooling approach does not preserve
the representational pattern that distinguishes compounds by the semantics of their
primary relation. One notable trend is that the overall best representation for all of the
monolingual English models is either the head-noun or the mean-pooled compound.
These correlations occur in the early-middle layers of the model, while bert-base-japanese
and xlm-mlm-xnli15-1024 produce their best representations of the coarse-grained the-
matic relation RDM in their final layers of processing. In particular, xlm-mlm-xnli15-1024
shows an almost monotonic increase in correlation into later layers, clearly indicating
that this model best represents thematic relation information for compounds in the final
three layers of processing.

Despite observing a clear disparity between the correlation strengths of the baseline
Japanese model and the other five types of Transformer models, we note that the
overall effect sizes are not particularly high, peaking at a moderately positive correlation
of around 0.2 for the roberta-base representations. One reason for this range of effect
strengths is that the token vectors of these Transformer models encapsulate much more
information about the compound nouns (broader semantic and syntactic information,
world knowledge, etc.) than the relational information alone and as such there will
be a limit on the amount of variance between the representations that is explained
by the relation category only. This underlines the importance of including a baseline
model in order to contextualize the strength of alignment between the relation category
dissimilarity and dissimilarity patterns measured within a given model.

3.2.3 Summary. We found that excluding early layers of xlm-mlm-xnli15-1024 and most
layers of the baseline bert-base-japanese model, all models produced representations that
moderately positively correlated with the relation category distinction, a finding that
agrees with our prediction for our first research question (that the English models
would represent relational information between head and modifier words in noun-
noun compounds). There are mixed results for where this information is localized (both
with respect to token span and layer), but overall we find that the middle layers are
more highly correlated with the relational signal for BERT-style models and there is a
clear trend for later layers of xlm-mlm-xnli15-1024 to elicit stronger correlations with the
relation category RDM.
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3.3 Experiment 1b: Relation Category and Processing Condition RSA
3.3.1 Overview. As mentioned in the Introduction, a variety of possible confounds exist
in the analysis of noun-noun compound meaning, including the potential co-occurrence
of thematic relation information with the individual constituent words. This experiment
is therefore designed to measure the difference in the strength of the coarse-grained
thematic relation signal when Transformer-based language models are presented with
the modifier word and the head noun together in a compound phrase (e.g., “They
are war riots”) compared to when we compose representations of a compound from
the activations to the head noun and modifier word where they are processed in two
separate sentences (e.g., “It is a war” and “They are riots”). If there is a greater correlation
with the thematic relation RDM when the two constituent words of a compound are
processed as a noun-noun compound phrase in the same sentence compared to when
they are processed separately, this would indicate that the model represents the se-
mantic information of the thematic relation in the noun-noun compound rather than
only relying on information about the co-occurrence of a particular head or modifier
word with a particular thematic relation category. In this experiment we use a similar
RSA procedure to that of the first Relation Category RSA experiment (described in
Section 3.2) by measuring the correlation between the thematic relation RDM and mean-
pooled token representations for the head and modifier extracted under two processing
conditions: (i) when the head and modifier nouns of a compound are processed in the
same sentence, and (ii) when the head noun and modifier noun are processed in two
separate sentences.

3.3.2 Results. The results for the Relation Category and Processing Condition RSA
experiment are given in Figure 6. We used one-sided paired sample t-tests for each of
the layers of each model to compare the correlation strengths within the 60 compound
groups across the two processing conditions. Significant effects at p ≤ 0.05 after apply-
ing a false discovery rate controlling procedure (Benjamini–Hochberg with α = 0.05)
are indicated with asterisks.

The statistical analysis shows that most layers of the roberta-base, distilroberta-base
and the MultiBERTs models represent the thematic relation better in the context where
the modifier and head are presented together as a compound, compared with where
they are presented separately, which is as expected if the models represent the relational
semantics of the noun-noun compound phrase rather than relational information asso-
ciated with the two words separately. The most striking results are for the roberta-base
and distilroberta-base models—when the modifier and head noun are processed together
as a compound, these models have the highest overall correlations with the relation
category RDM, and furthermore these correlations are significantly higher than in the
separate processing case for nine of the 12 layers of roberta-base and all but one layer
of distilroberta-base. In the case of the baseline bert-base-japanese model, there is clearly
no difference in how well the thematic relation is represented across the Together and
Separate conditions. In the final layers of the multilingual xlm-mlm-xnli15-1024 model,
we see a difference in average correlation between the two conditions, but this difference
is not statistically significant.

We note that for the models that show the largest differences in the compound
processing case compared to the separate sentence case (roberta-base and distilroberta-
base), both of these models show low correlations when the modifier and head words are
not processed in the same context, an effect that is strongest in their first few layers. This
result suggests that models that compose representations of semantic relations between
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Figure 6
Results of the Relation Category and Processing Condition RSA experiment (Section 3.3).
Average correlation between the same thematic relation ground-truth RDM and experimental
RDMs constructed using mean-pooled token-span representations for two compound
processing conditions: when the head noun and modifier noun are presented together as a
noun-noun compound in the same sentence (“Together”), and when the head noun and modifier
noun are presented in separate sentences (“Separate”). Results for 300 sentences; correlation
averaged across 60 compound groups.

words within the same context encode information about the thematic relation more
strongly than models that begin with a relatively strong association between individual
word embeddings and their possible thematic relations (such as xlnet-base-cased and the
MultiBERTs.

The first layer of xlnet-base-cased gives the strongest correlation to the thematic
relation RDM when the words are processed separately. We can compare this result to
the similar early layer bias for xlnet-base-cased in the Relation Category RSA experiment
(Section 3.2), where the representations for the head noun in the first few layers of the
model gave the strongest correlations. Taking these results together, it would appear
that for representing thematic relations in noun compounds, xlnet-base-cased relies on
distributional information of the co-occurrence between particular individual words
and particular thematic relations. In particular, this information is primarily encoded in
the head noun and is at its strongest closer to the embedding representation. Together
with the lack of a significant difference between the Together and Separate conditions
for xlnet-base-cased, this suggests that this model mostly relies on lexical information
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about the association of words with thematic relations, rather than a truly compositional
representation of the thematic relation used in compound meaning, as seen in the results
for roberta-base, distilroberta-base, and the MultiBERT models.

3.3.3 Summary. It is clear that processing both the head and modifier in the same context
tends to strengthen the correlation between the resulting compound representation and
the broad semantic relation category RDM for most layers of most models. This “compo-
sitional gain” is strongest with BERT-style models, where the difference in correlation
value was significant for most layers. This finding sheds light on the first part of our
second research question, where we predicted that some models would contextually
compose head/modifier semantic information rather than memorizing distributional
co-occurrence information about head/modifier words and their associated semantic
relations.

3.4 Experiment 2a: Relation Vector RSA
3.4.1 Overview. In this experiment we use RSA and the 60 compound dataset to mea-
sure the representation of the fine-grained relation vectors across different models,
layers, choices of representation, and levels of granularity. To measure different levels
of granularity, we target two ground-truth RDMs: (a) an RDM using the top-mentioned
thematic relation dimension in the thematic relation vector for each compound (created
by considering two compounds to be maximally similar if they share their most fre-
quently reported relation, and maximally different otherwise) and (b) an RDM using the
full 18-dimensional relation vector for each compound (created by measuring pairwise
cosine similarity between compounds). We can consider the correlation between model-
elicited RDMs and the top-mentioned relation RDM as a measure of how well the
Transformer-based language models encode a more coarse-grained representation of
noun-noun compound semantic similarity across a broad variety of compounds, thus
acting as a bridge between the Relation Category experiments (Sections 3.2 and 3.3)
and the fine-grained 18-dimensional RSA of the Relation Vector RSA experiments. The
60×60 RDMs can be seen in Figure 7. As in the Relation Category RSA experiment,
the data for the experimental RDMs is calculated as the model activation patterns for
the mean-pooled token spans across (1) the modifier word, (2) the head noun, and (3) the
whole compound. We construct three experimental RDMs for each layer of each model
by taking the cosine similarity between all 3,600 pairs of samples for the three choices of
representation and use Pearson’s r to correlate the experimental RDMs with the ground-
truth RDMs. Again, we only consider the upper triangle (excluding the main diagonal)
of each RDM in our correlations.

3.4.2 Results. The results for the Relation Vector RSA experiment are given in Figure 8.
Overall, we see the same pattern of results for this dataset and these ground-truth RDMs
as in the Relation Category RSA experiments: roberta-base and distilroberta-base show the
overall strongest correlations, followed by the MultiBERTs models and xlnet-base-cased,
and the poorest fit to the ground-truth RDMs is seen for the non-monolingual models.
As in both parts of the Relation Category experiments, the baseline Japanese model
(bert-base-japanese) does not provide strong correlations between the model activation
RDMs and the ground-truth RDMs, indicating that this model fails to encode informa-
tion about the kind of thematic relation used in compounds. Similarly, the multilingual
transformer model (xlm-mlm-xnli15-1024) also achieves relatively low correlations in all
layers when compared to the four models trained only on English corpora.
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Figure 7
RDMs based on the “fine-grained” semantic relation vector representations, using 60
compounds.

Overall there are stronger correlations for model representations for the RDM
based on the top-mentioned relations (shown by solid lines in Figure 8) than for the
RDM based on full thematic relation vectors (shown in dashed lines). This is particu-
larly apparent in BERT-style models and in early layers of xlnet-base-cased and xlm-mlm-
xnli15-1024. One interesting trend in the results of the Relation Vector RSA is that
representations from xlnet-base-cased and xlm-mlm-xnli15-1024 strongly distinguish com-
pounds by their top-mentioned relation in earlier layers of processing before this cor-
relation declines in a step-wise manner across layers. We also find that the fine-grained
18-dimensional representation of compounds is more strongly distinguished in the later
layers of these same models. When taken together, these effects appear to be a trade-off
between the two thematic relation signals in xlnet-base-cased and xlm-mlm-xnli15-1024,
with the more general relation classification being strongly apparent at the beginning of
processing before gradually giving way to a more fine-grained view of head-modifier
semantic relations. The xlm-mlm-xnli15-1024 result is somewhat surprising as the Rela-
tion Category RSA showed that this model’s coarse-grained semantic signal follows
a strong positive monotonic trajectory across layers, although in both analyses the
correlations for xlm-mlm-xnli15-1024 are not strong. We also observe some differences
in trends between the Relation Category RSA and the Relation Vector RSA experiments
with xlnet-base-cased (for example, the correlations achieved by xlnet-base-cased are more
stable across layers in the Relation Category RSA). In contrast, none of the BERT-style
models feature any such apparent discrepancy (although there is a greater variation in
correlation strength across representation types for these three models). All three types
of BERT model tend to show the strength of both the general and fine-grained thematic
relation signal varying in the same direction together over the course of layers.

3.4.3 Summary. We found that the strongest correlations across most models were
with the version of the RDM that only considered the top-mentioned relation dimen-
sion, for the BERT and RoBERTa models. Interestingly, the most strongly correlated
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Figure 8
Results of the Relation Vector RSA experiment. Correlation between Transformer representation
RDMs and the ground-truth semantic relation RDMs when (i) considering only the top
mentioned thematic relation in each vector and (ii) similarity of the full 18-dimensional relation
vectors.

representations of the broad semantic category were found in the head noun tokens
of roberta-base and the representations that most aligned with the full 18-dimensional
relation vector were found in the modifier nouns of that same model, suggesting that
different types of relational information could be localized in different parts of the
compound, a finding that is consistent across the BERT-style models.

3.5 Experiment 2b: Relation Vector and Processing Condition RSA
3.5.1 Overview. In this experiment we use RSA to measure the correlation between the
18-dimensional relation vectors and the Transformer model representations under the
two processing conditions introduced in the Relation Category and Processing Condi-
tion RSA experiment (Section 3.3): (i) when the head and modifier nouns of a compound
are processed in the same sentence, and (ii) when the head noun and modifier noun are
processed in two separate sentences. In both processing conditions we take the mean-
pooled intermediate token vector across head and modifier tokens as the compound
representation. In this experiment we use the full 18-dimensional relation vector for
each compound, as in condition (ii) of the previous Relation Vector RSA experiment.
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3.5.2 Results. The results for the Relation Vector and Processing Condition RSA ex-
periment are given in Figure 9. As in previous experiments, we find that roberta-
base and distilroberta-base representations elicit the highest correlation strengths (when
compound components are processed together in the same context), and that bert-base-
japanese achieves relatively low correlations. In contrast to the relatively strong coarse-
grained semantic signal in later layers of xlnet-base-cased that were observed in the
Relation Category RSA experiments, we see that xlnet-base-cased struggles to represent
the fine-grained semantic signal in both processing conditions, often resulting in lower
correlations than the baseline Japanese monolingual model. As was seen in the Relation
Category RSA experiments, representational dissimilarity patterns produced by xlnet-
base-cased and the MultiBERT models tend to align more with the semantic relation RDM
than the multilingual and monolingual Japanese model, but less than roberta-base.

By examining the effect of the processing condition on the representation of fine-
grained semantic differences between compounds, we find that processing the head
and modifier words in the same context almost always leads to a stronger semantic
signal in the final compound representation. The trends observed in this fine-grained
setting broadly align with the results of the Relation Category and Processing Condition
experiment, where it was found that roberta-base and distilroberta-base benefit massively
from the same-context processing condition. In the Relation Vector and Processing
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Figure 9
Results of Relation Vector and Processing Condition experiment. Correlation between
Transformer representation RDMs and the ground-truth semantic relation RDM (using all 18
relations) under two processing conditions.

67



Computational Linguistics Volume 50, Number 1

Condition experiment, we find fewer significant differences between the processing
conditions than in the Relation Category version of the experiment, although all sig-
nificant differences are found in roberta-base and distilroberta-base. While xlnet-base-cased
and the MultiBERTs tend to improve their representation of both the coarse-grained
and fine-grained semantic RDMs under the normal same-context processing condition,
they tended to benefit less than the RoBERTa style models in the Relation Category
and Processing Condition RSA. This effect is more pronounced in the fine-grained
setting, where the MultiBERT models in particular produce relatively good represen-
tations of the 18-dimensional relation vectors when its head and modifier words are
processed separately in different sentences before being mean-pooled together. In con-
trast, separate-context representations for both roberta-base and distilroberta-base never
reach a correlation strength greater than 0.02. By comparing this result to the Relation
Category and Processing Condition RSA, we can argue that RoBERTa-based models
can (to an extent) encode broad semantic categories in singular word representations
while failing to represent almost any of the fine-grained semantic relations that could
apply to a given head or modifier word until a corresponding modifier or head-noun
is provided in the same context. On the other hand, the MultiBERT models and xlnet-
base-cased represent potential relations that can apply to a particular head or modifier in
static representations, despite the corresponding modifier or head noun not being seen
in the same processing context. One of the biggest differences between the results of
the Relation Category and Relation Vector versions of the experiment is that xlm-mlm-
xnli15-1024 is able to produce relatively good representations of coarse-grained noun-
compound semantic distinctions (particularly in later layers), while failing to capture
much of fine-grained semantic differences between compounds.

3.5.3 Summary. As was found in the Relation Category RSA experiment (Section 3.3),
correlations between the relation vector RDM and the model-elicited RDMs were gen-
erally stronger when the head and modifier were processed in the same context, again
agreeing with our prediction that allowing the whole compound to be compositionally
processed leads to the model producing representations that encode more information
about the semantic category of the compound. This “compositional gain” was particu-
larly strong in roberta-base and distilroberta-base, but surprisingly there was little drop-off
in correlation strength when the MultiBERT models processed head and modifiers in
different contexts.

3.6 Experiment 3: Compositional Probe
3.6.1 Overview. Using a complementary methodology to the RSA-based analyses of the
previous experiments, we also conduct a Compositional Probe experiment that is de-
signed to test whether mean-pooled token vectors corresponding to modifier words and
head nouns require concurrent processing of both words in the same sentential context
in order to encode fine-grained thematic relation information. To this end, a probing
experiment is defined that uses linear regression models to predict the 18-dimensional
thematic relation vector (from the Devereux and Costello [2005] dataset) from mean-
pooled token vectors across compound spans under the two processing conditions
defined in the Relation Category/Vector and Processing Condition RSA experiments:
(1) when the head and modifier word are processed normally as a compound in the
same sentence and (2) when the head and modifier word are processed in separate
sentences before being mean-pooled.

Our methodology uses an adapted version of the 2 vs. 2 test framework described
in Mitchell et al. (2008) and Xu, Murphy, and Fyshe (2016). For a given set of compound
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representations of size n = 60 we carry out linear regression probing tests that compare
all possible pairs of compounds (1,770 pairs in total). For each unique pair consisting
of compound i and compound j, we train a linear regression model to predict the
relation vectors for the other 58 compounds using the corresponding 58 compound
representations. The model then produces predictions Ỹ i and Ỹ j from Xi and Xj, and
we evaluate whether a test is successful based on the criterion:

dist(Ỹ i, Yi) + dist(Ỹj, Yj) < dist(Ỹ i, Yj) + dist(Ỹj, Yi)

where the distance is measured using mean-squared error. Note that when the suc-
cess criterion is met, the regression model produces relation vector predictions for
compounds i and j that are closer to the true relation vectors for compounds i and j,
respectively, than the other way round.

We run this set of probing tests for each layer of each model and compare the
decodability of the normally processed compound representations to the compound
representations processed over two separate sentences. If both types of compound rep-
resentations achieve similar numbers of successful tests in this experiment, this would
indicate that the representations of the head noun and modifier word separately encode
the range of common thematic relation types for each word, and that this encoding does
not depend on the compositional meaning of the two words together in a compound.
For example, the word MOUNTAIN as a modifier may tend to often be used with a M
located in H relation in compounds (as in the phrases MOUNTAIN STREAM, MOUNTAIN
CABIN, etc.), and the models may be sensitive to this kind of thematic information in
their representation of individual words, without representing the relation in specific
compounds. On the other hand, if it is much easier to decode the relation in contextually
processed noun-noun compounds, then we would argue that the model instead encodes
thematic relation information using a contextually aware composition mode.

3.6.2 Results. The results for the Compositional Probe experiment are given in Figure 10.
For these results, for each model and layer, we statistically test whether the number of
successful 2 vs. 2 tests (from 1,770 tests in total) for the condition where the modifier
and head are presented together as a compound is greater than the number of successes
when the modifier and head are processed in separate sentences. In this statistical
analysis, there are dependencies in the outcomes of the 1,770 tests for the two conditions
that need to be taken into account. Firstly, the outcomes for the two conditions are paired;
the outcome for a test for a particular pair of compounds (i, j) in the Together condition
is not independent of the corresponding outcome in the Separate condition, as they
involve the same lexical items. Secondly, the probability of a success for a given pair of
compounds (i, j) will depend on the quality of the language model’s representation of
compounds i and j, and this will vary from compound to compound. A consequence
of this is that outcomes are not statistically independent across the 1,770 tests (for ex-
ample, if a language model has a poor representation for compound i, then this means
that the probability of a success for the 59 tests containing compound i will be low,
compared with tests not containing this compound).

In order to take these statistical dependencies into account, we perform a random-
ization test (Edgington and Onghena 2007) to compare the number of successes across
the two conditions. Our null hypothesis is that the number of successes in the ‘Together’
and ‘Separate’ conditions do not differ. Under this null hypothesis, the probability of a
success in the two conditions for a given pair does not differ, and thus the observed
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Figure 10
Results of the Compositional Probe experiment. The proportion of successes across 1770 2-vs-2
tests to decode thematic relation vectors from compound representations. Results are reported
for two compound processing conditions: (i) when the head noun and modifier noun are
processed together as a single compound in the same sentence, and (ii) when the head noun and
modifier noun are processed in two separate sentences. Asterisks mark significant differences
(at the threshold of p < 0.05) between the number of successes across the two processing
conditions. Chance performance on this experiment is 0.5.

outcome for that pair in the Together condition is interchangeable with the observed
outcome for that pair in the Separate condition. Thus, in one run of our randomization
procedure, the two outcomes for each pair are randomly assigned to the two conditions,
and we calculate the difference between the number of successes in the two conditions.
We perform 10,000 runs of this randomization procedure, to build a distribution of
these differences assuming the null hypothesis is true. Finally, we obtain a p-value
for a one-sided test testing whether the actual observed number of successes for the
Together condition is greater than the Separate condition, by counting the proportion
of times the observed difference is greater than the differences obtained across our
10,000 randomization runs. As in the earlier experiments, significant effects at p ≤ 0.05
after applying a false discovery rate controlling procedure (Benjamini–Hochberg with
α = 0.05) are indicated with asterisks in Figure 10.

For all layers of the four monolingual English Transformers, the thematic relation
vector is more decodable from the compound representation when the head and mod-
ifier words are processed together in the same sentence. This compositional gain from
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same-context processing was found to be statistically significant in all layers of these
four models excluding the first layer of the MultiBERT models. Within the four most
decodable models, representations from the MultiBERT models gain the least from
the normal contextual processing condition. Despite the relatively low difference in
successful tests for the MultiBERT models across the two conditions, the fact that these
differences are significant across the 25 instantiations of the same model suggests that
this effect is robust and that BERT models consistently produce better representations of
the semantic relation vector when the head and modifier words are processed together
as a compound. Alongside the RSA analyses of previous experiments, these results
again indicate that the Transformer-based language models that most strongly encode
compound semantic relations also tend to compositionally integrate their knowledge of
the head noun and modifier word in order to represent semantic relation information,
above and beyond what can be decoded by relying on any association between thematic
relations and the individual words.

Although the results above demonstrate better than chance decoding accuracy in
the 2 vs. 2 experiment for most models and layers, we next investigated which indi-
vidual compounds had poor quality predicted relation vectors, to better understand
how the Transformer-based language models may fail to capture the compositional
semantics of compounds. For the 2 vs. 2 decoding experiment, we save the predicted
vector Ỹ i of every compound i, averaging the predicted vectors across the 59 tests
where compound i appears in the pair of compounds. In this way, we obtain an average
relation vector prediction for each of the 60 compounds for each layer of each language
model. In an exploratory analysis to investigate which compounds had generally poor
quality predicted relation vectors across models and layers, we used the DBSCAN
algorithm (Ester et al. 1996) to perform 60 cluster analyses—for each compound, we
cluster all the predicted relation vectors, for every type of model and layer. For this
analysis we select one candidate bert-base-uncased model from the set of MultiBERTs (as
opposed to averaging the models’ predictions, which would be akin to constructing
an ensemble model that would perform better than any particular BERT model). We
next calculated the average predicted relation vector for each cluster to obtain cluster
centroids, and ranked the compounds by the greatest amount of error incurred by the
best-performing cluster (i.e., the cluster with the smallest Euclidean distance between
the cluster centroid and the ground-truth relation vector).

The five compounds that were most difficult to decode in the compound decoding
experiment from the Compositional Probe experiment are presented in Table 2. For
the compound CONSTRUCTION EQUIPMENT the ground-truth relation vector has high
values for the H for M, H used by M, and H causes M dimensions (i.e., EQUIPMENT
for CONSTRUCTION, EQUIPMENT used by CONSTRUCTION and EQUIPMENT causes CON-
STRUCTION). However, in the clustered prediction relation vectors, the closest cluster
centroid has high values for the H derived from M, H made of M, and H is M dimensions.
Comparing the cluster’s prediction for the compound CONSTRUCTION EQUIPMENT to
the ground truth relation vector of STEEL EQUIPMENT, we see that the models are likely
to have been overfitted for the word EQUIPMENT (i.e., equipment tends to be made
of something else, but this is not actually reflected in the semantic relationship with
construction). Similarly, the predictions for STEEL EQUIPMENT seem to be informed by
the ground truth relation vector of CONSTRUCTION EQUIPMENT. We also found a similar
effect for VAPOR CLOUD and VAPOR DROPS. The other two difficult compounds, CREAM
CHURN and BREAKFAST SUGAR, feature unique head and modifier nouns within the
dataset, and as such have not been subject to this lexical bias. For the compound CREAM
CHURN, the closest cluster contains predicted relation vectors from layers 3-8 of the
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Table 2
Top five most difficult compounds (as measured by the distance between predicted and actual
relation vectors) on the 60 compound linear regression relation vector decoding experiment
(Section 10). Compounds are ranked by greatest average distance between the best-performing
set of models (grouped by clustering their predictions). The top three relation dimensions and
their values are reported for the ground truth and predicted relation vectors. The models in the
best-performing cluster are abbreviated. Model layer ranges are given in superscript.

Compound Ground truth Cluster prediction Models in cluster

construction
equipment

H FOR M (15) H DERIVED FROM M (11.4) BBJ1−12 BBU1−12

H USED BY M (11) H MADE OF M (9.9) DB1−6 RB1−12

H CAUSES M (7) H IS M (8.2) XBC1−12 XMX11−12

steel
equipment

H MADE OF M (15) H USES M (8.9)
BBJ1−11H DERIVED FROM M (14) H FOR M (5.1)

H IS M (11) H USED BY M (5.1)

vapor
cloud

H MADE OF M (17) H CAUSES M (7.8) BBJ1−12 BBU1−12

H IS M (11) H MAKES M (7.5) DB1−6 RB1−12

H DERIVED FROM M (8) H USES M (5.1) XBC1−12 XMX11−8

cream
churn

H MAKES M (16) H USES M (10.7)
BBJ3−8H FOR M (10) M CAUSES H (6.3)

H USES M (5) H HAS M (4.5)

breakfast
sugar

H FOR M (12) H DERIVED FROM M (9.2) BBU1−12 DB1−6

H DURING M (10) M MAKES H (8.3) RB1−12 XBC1−12

H USED BY M (6) M CAUSES H (8.1) XMX11−10

bert-base-japanese model, indicating that the English language models are producing
poor representations of the relation in this compound. While CHURN makes CREAM
is the top dimension in the ground truth, CHURN uses CREAM is the top predicted
dimension; this may reflect the relatively few total mentions for this H makes M relation
type across the 60 compounds (as can be seen in Figure 2). The top predictions for
BREAKFAST SUGAR all erroneously indicate that sugar is derived from breakfast. One
possible explanation for such predictions is that relations such as H derived from M, M
makes H, and M causes H are commonly associated with food concepts in the dataset
(e.g., OLIVE PASTE, VEGETABLE APPETIZER & GRAIN CONTROVERSY). The pattern of
errors underlines the importance of controlling for associations between individual
words and semantic relations when probing the models for compositional semantics,
as we do in our compositional probing technique and in our contrast of the Together
and Separate processing conditions in the RSA analysis.

3.6.3 Summary. All four of the monolingual models produce representations of com-
pound nouns that are more easily decoded for head-modifier relational information
when the head and modifier words are processed in the same context. This effect is
stronger than we anticipated given previous work on compositionality of multi-word
expressions in Transformer models. This relational information is less available for
probing in the baseline Japanese and the multilingual model, which often produce
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representations that are just as decodable (and sometimes less decodable) when head
and modifier words are processed separately rather than as a compound.

4. Principal Findings and Implications

Using a novel approach based on ground-truth human annotations of relation meaning
in the interpretation of noun-noun compounds, we used complementary represen-
tational similarity and linear probing methods to investigate whether Transformer-
based language models represent the semantics of the thematic relation in noun-noun
compounds. Across the experiments and analyses, we find that the English-language
Transformer models, and in particular roberta-base and distilroberta-base, consistently and
significantly represent compound relation semantics. Importantly, this finding persists
even with careful control of the lexical content of the compounds, achieved both through
psycholinguistic design that orthogonalizes relational content and the modifier and
head words (i.e., the Relation Category RSA experiments) and through comparing the
quality of the compound relation representation to the non-compositional representa-
tions obtained when processing the modifier and head words separately (the Relation
Category/Vector and Processing Condition experiments and the Compositional Probe).

4.1 Knowledge of Implicit Intra-compound Semantic Relations

Using the 300 compound dataset and representational similarity analysis, the Relation
Category RSA experiments showed that models apart from bert-base-japanese produce
representations that moderately correlate with simple coarse-grained thematic relation
signals. In the Relation Vector RSA experiments, an alternate coarse-grained RDM was
constructed by considering pairs of compounds from the 60 compound dataset to be
similar only if they share their top-mentioned relation. Again, this experiment provided
evidence that all five Transformer-based language models that were exposed to signifi-
cant English language training data (i.e., all but bert-base-japanese) produce token vector
representations of compounds that can be distinguished by the dissimilarity pattern
induced by the top-mentioned ground-truth relation (although the multilingual model,
xlm-mlm-xnli15-1024, achieved relatively low correlations with the thematic relation
signal on this task compared to the four monolingual English models).

We also found evidence that Transformer-based language models learn multi-
dimensional fine-grained aspects of the semantic relation between head nouns and
modifier nouns in English noun-noun compounds using the 60 compounds relation
vector dataset (Devereux and Costello 2005) coupled with RSA (in the Relation Vector
RSA experiments) and linear regression probing models (in the Compositional Probe ex-
periment). In the Relation Vector RSA experiments it was found that the 18-dimensional
relation vector representation task was more difficult than distinguishing compounds
by whether they share their primary relation. Despite this increased difficulty, it was
shown that token vector representations from four of the monolingual English models
achieve moderate correlations with the 18-dimensional representational dissimilarity
matrix. While xlm-mlm-xnli15-1024 only achieved correlations of around one-third the
strength of the most highly correlated model (roberta-base), this model demonstrated
evidence of increasingly stronger correlations towards later layers. On the other hand,
the baseline non-English monolingual model, bert-base-japanese, achieved a consistently
low correlation strength, which may have been inflated slightly by a lexical overlap
bias. In the Compositional Probe experiment, we found clear evidence that every model
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apart from the Japanese model produces token vectors that can be used to predict the
18-dimensional compound with linear regression probing models. Again, in this task
the BERT-style models excelled over xlnet-base-cased and xlm-mlm-xnli15-1024. Taken
together, these results clearly show that Transformer-based language models learn to
encode information about the semantic relation between head nouns and modifier
words in English noun-noun compounds. This finding conflicts (to an extent) with Yu
and Ettinger (2020), where little evidence of compositionality was found in Transformer
model representations using similarity ratings and paraphrase classifications. In con-
trast to that work, the present analysis uses an explicit model of compound semantics
based on human annotation data for thematic relations, allowing us to directly measure
the semantic representation for a given compound. However, in cases where Yu and
Ettinger (2020) identify limited evidence of compositionality, they find that RoBERTa
outperforms both XLM and XLNet, a result that generally aligns with our findings.

4.2 Encoding Mechanisms for Intra-compound Semantic Information

Our second major research question was how information about the semantic relation
between the head and modifier word in a compound noun was encoded in Transformer-
based language models. We identified three main areas of interest within this investi-
gation: (1) whether the representation of this semantic relation results from a dynamic
composition mode rather than relying on memorizing distributional co-occurrence in-
formation, (2) if this information is primarily localized within a particular token span
within the compound vectors (i.e., in the head or modifier token vectors), and (3)
whether this information was generally localized to a particular layer or set of layers
within Transformer-based language models.

We investigated the question of whether Transformers dynamically compose in-
formation about the thematic relation between head words and modifier words by
developing two types of “compositional probes” that check for statistical differences
between how well a Transformer represents this semantic information under two pro-
cessing conditions: (1) when a head and modifier words are processed normally as
a single compound in the same context, and (2) when the head and modifier words
are processed in separate sentences before their token vectors are mean-pooled. We
argue that if a Transformer-based language model encodes more relational information
about the compound under the same-context processing condition, then this model
does not rely solely on distributional information about the co-occurrence of particular
head/modifier words and their likelihood to be used with particular semantic relations;
instead, they must be representing compositional relational information that is true
of the compound as a phrase. In the RSA version of this compositional probe (the
Relation Category and Processing Condition RSA experiment), we found that almost
all layers of the English monolingual models benefited significantly from same-context
processing condition. In contrast, only the final few layers of the multilingual model
showed a compositional gain (a difference which was not statistically significant) and
the baseline Japanese model achieved around chance levels of decodability under both
conditions. Of the models that did demonstrate a significant compositional gain in our
compositional probe (i.e., the normal compound processing condition), roberta-base and
distilroberta-base both demonstrated the largest compositional gain and the overall best
correlation to the ground-truth relation dissimilarity matrix, although the MultiBERTs
models and xlnet-base-cased were relatively easily decodable despite benefiting less
from processing constituent words of a compound in the same sentence. In the linear
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regression decoding version of this analysis (the Compositional Probe experiment),
we found evidence that most layers of all models except xlm-mlm-xnli15-1024 and
bert-base-japanese benefit significantly from dynamic compositional processing in the 60-
compound setting. These results generally show that Transformer-based language mod-
els produce representations of compounds that best encode for semantic information
about how the head word relates to the modifier word when these constituent words
are processed in the same context.

Another question of interest within the overall enquiry into how these models
encode semantic information relating to head and modifier words is to what extent this
information is localized to particular token spans within a Transformer’s representation
of a noun-noun compound. In order to shed light on this area, we included representa-
tions from head and modifier word token spans in our Relation Category and Relation
Vector experiments. In these experiments we investigate the representation of both the
coarse-grained and fine-grained semantic relation signal using our two main analysis
techniques (RSA and linear decoding). In the Relation Category RSA experiment, it is
difficult to point to any broad representational trends other than that the correlation
strengths of the modifier noun vector and the full compound vector were similar in
most of the Transformer-based language models we investigated. Nonetheless, the fact
that the baseline Japanese model achieves a relatively high correlation with the relation
type RDM in the Relation Category RSA experiment is somewhat conspicuous. In the
Relation Vector RSA experiments, we observe a pattern across the BERT-style models
whereby the head noun is preferred for representing the shallow top-mentioned relation
RDM, whereas the modifier noun in many cases elicits stronger correlations than even
the whole-compound vector. These trends however do not tend to hold for xlm-mlm-
xnli15-1024 and xlnet-base-cased, where the differences are more difficult to interpret.

The final aspect of how implicit intra-compound thematic relation information is
encoded that we investigated is whether this information is localized to particular layers
of processing. Across our experiments we find disparate trends in the results with re-
spect to both correlation with ground-truth RDMs and decodability scores across layers.
Among the BERT-style models, we find that various measures of the semantic relation
signal are strongest in early/middle layers of the MultiBERT models and middle/late
layers of roberta-base and distilroberta-base. In the Relation Category RSA experiment,
we can see that the coarse-grained thematic relation signal of the MultiBERT models
is at its strongest in the middle layers, before this information diminishes in the final
few layers of processing. This result appears to contrast with Tenney, Das, and Pavlick
(2019), who found that semantic information appears in later layers of BERT. We note
however that performance on the semantic tasks used in that work (i.e., semantic role
labeling [SRL] and coreference) reflect a model’s ability to process high-level semantic
information. It could be the case that a model’s capacity to distinguish between words
using semantic concepts such as thematic relation is a prerequisite to capturing the high-
level semantic information required in SRL and coreference resolution. Furthermore,
Tenney, Das, and Pavlick (2019) note that semantic information is dispersed widely
across layers (compared to the stronger localization of information associated with
syntactic processing). This phenomenon can be seen in the results of the four English-
language monolingual models in the Relation Category RSA experiment, where we can
recover a relatively good representation of the coarse-grained thematic relation signal
from the least correlated layers. Interestingly, we find several cases where the layer-
wise correlation trends of xlnet-base-cased align with those seen in xlm-mlm-xnli15-1024.
In particular, both of these models show a coarse-grained/fine-grain trade-off in the
Relation Vector RSA experiments, and both of these models decrease in decodability
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across subsequent layers in an almost monotonic fashion in the Compositional Probe
experiment. In general, both xlm-mlm-xnli15-1024 and xlnet-base-cased tend to represent
fine-grained dissimilarity patterns (as measured with RSA) better in later layers. At the
same time, the individual dimensions of vectors produced by these two models become
less decodable in later layers. In the case of the BERT-style models, it is clear that the final
layer is not the best for representing the thematic relation signal and we recommend
exploring the use of middle layers for downstream tasks that require similar relational-
semantic information.

5. Limitations and Future Work

One of the main limitations of our analysis was the relatively small size of the datasets
we used compared to other datasets that are used for evaluation in natural language
processing research. In this area we are limited by the lack of large, annotated noun-
noun compound datasets, as the process of labeling noun-noun compounds with the-
matic relations is a time-consuming process for human annotators. This is particularly
the case for the 18-dimensional setting, where every potentially applicable relation must
be considered, rather than choosing one main relation. The fact that we can only use
the 300 compound dataset to compare within each of the 60 groups means that we are
limited to a total of 540 comparisons between compound representations using RSA, as
the upper triangle of the ground truth RDM structure in Figure 4 (excluding the main
diagonal and the compound pair marked in gray) allows for 9 comparisons within each
group. We identify this annotation task as a key recommendation for future work for
extending our analyses. While the 60 compound dataset provides a richer annotation
of the underlying relation between head and modifier nouns, this dataset again allows
for relatively few comparisons (1,770 pairs for RSA and the 2 vs. 2 test). In part due to
the limited number of samples available to us, we chose to use data analysis techniques
developed by researchers in the area of cognitive science, as this field is often limited by
both the number of subjects that can be observed, and the number of stimuli that can be
presented to a human subject within a single session.

Another area where our analysis is limited is the range of Transformer-based
language models we investigated. While these models were chosen to cover a range
of Transformer types, it is impossible to make generalizable judgments about certain
classes of model (i.e., multilingual models or distilled models) based on our analysis,
as we only feature one type of model in each of those classes. One exception is our
analysis of bert-base-uncased, roberta-base, and distilroberta-base, which allows us to make
generalizable statements about this class of Transformer. This is particularly true of the
bert-base-uncased model, as we carry out an analysis on 25 different instantiations of
this same class of model. In any case, future work should expand the analysis of how
Transformers process noun-noun compounds to cover several models within each one
of these areas. A related recommendation towards building a more robust analysis is to
train several versions of the other five types of model, allowing for variation within a
constrained architecture and choice of hyperparameters (McCoy, Min, and Linzen 2020).

As part of our experimental design, we do not consider the effect of fine-tuning
Transformer-based language models. This choice allows us to probe Transformer-based
language models for their capacity to automatically capture implicit semantic informa-
tion about noun-noun compounds at the expense of limiting the generalizability of our
findings in fine-tuning settings that are commonplace in the application of Transformer-
based language models for solving downstream tasks. This consideration is particularly
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relevant in the context of probing representations with simple linear models, as latent
high-level semantic information about noun-noun compounds may require non-linear
processing facilitated by fine-tuning several layers in order for this information to
become available for linear regression models in the final layers. After juxtaposing the
high RSA correlations found in later layers of xlm-mlm-xnli15-1024 and xlnet-base-cased
in the Relation Vector RSA experiments with the relatively low decodability scores for
later layers of these two models seen in the Compositional Probe experiment, we would
expect fine-tuning to be particularly useful for these models. One further consideration
for expanding the analysis to allow for fine-tuning is that any sensitivity to noise
incurred by a small amount of training samples may be amplified during this fine-
tuning process, and thus the thematic relation vector dataset may need to be expanded
before introducing this experimental extension. Another potential limitation with our
experimental design is the choice to limit our RSA and probing tasks to token spans
within the noun-noun compounds. As was seen in all experiments, Transformer-based
language models tend to compose and distribute semantic information across many
token vectors. Accordingly, it could be the case that information about the thematic
relation between the head and modifier word could be distributed across tokens in other
parts of the sentence, rather than just in tokens in the compound. A related concern to
our choice of representation is the question of whether mean-pooling across tokens pre-
serves thematic relation information and whether other approaches should be explored,
such as concatenating a max-pooled vector with the mean-pooled token, or constructing
a non-linear recurrent neural network probe to preserve all token vector information. In
our experiments, we chose to consider a priori one choice of token representation that is
most simply and most straightforwardly related to the compound (i.e., mean pooled
token representations from within the compound), in order to avoid complications
due to “researcher degrees of freedom” (Wicherts et al. 2016). Nevertheless, future
work could investigate a wider range of possible model representations, to examine
the extent to which these Transformer-based language models distribute information
about compound relation semantics across the sentence, and whether such information
is recoverable from a whole-sentence representation.

6. Conclusion

In this work, we used two English noun-noun compound datasets in order to probe
Transformer-based language models for their knowledge of semantic relations between
head and modifier nouns. To this end, we constructed three experiments to measure
the representation of semantic relation information at a coarse and fine-grained level.
In our layer-wise analysis, we find evidence that head-modifier thematic relation in-
formation is encoded in the token vector representations of six different Transformer-
based language models. Of the six models we looked at, we find that the four English
monolingual models strongly represent this information at both the coarse and fine-
grained levels. Our compositional probe experiment shows that representations of these
four models significantly benefit from head and modifier nouns being processed in the
same context on a relation vector decoding task. Furthermore, we find evidence that
these models gain significant levels of decodability from this concurrent compositional
mode. These results suggest that the models that best encode relational information dy-
namically integrate their knowledge of the intrinsic properties of the head and modifier
concepts in order to represent the semantic relation between these words, rather than
only relying on distributional information of concept-relation frequency.
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