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Lemmatization is a natural language processing (NLP) task that consists of producing, from
a given inflected word, its canonical form or lemma. Lemmatization is one of the basic tasks
that facilitate downstream NLP applications, and is of particular importance for high-inflected
languages. Given that the process to obtain a lemma from an inflected word can be explained by
looking at its morphosyntactic category, including fine-grained morphosyntactic information to
train contextual lemmatizers has become common practice, without considering whether that
is the optimum in terms of downstream performance. In order to address this issue, in this
article we empirically investigate the role of morphological information to develop contextual
lemmatizers in six languages within a varied spectrum of morphological complexity: Basque,
Turkish, Russian, Czech, Spanish, and English. Furthermore, and unlike the vast majority
of previous work, we also evaluate lemmatizers in out-of-domain settings, which constitutes,
after all, their most common application use. The results of our study are rather surprising. It
turns out that providing lemmatizers with fine-grained morphological features during training
is not that beneficial, not even for agglutinative languages. In fact, modern contextual word
representations seem to implicitly encode enough morphological information to obtain compet-
itive contextual lemmatizers without seeing any explicit morphological signal. Moreover, our
experiments suggest that the best lemmatizers out-of-domain are those using simple UPOS
tags or those trained without morphology and, lastly, that current evaluation practices for
lemmatization are not adequate to clearly discriminate between models.

1. Introduction

Lemmatization is one of the basic NLP tasks and consists of converting an inflected
word form (e.g., eating, ate, eaten) into its canonical form (e.g., eat), usually known
as the lemma. Thus, we follow the formulation of lemmatization as defined by the
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Table 1
Examples of inflected forms of the word ‘cat’ in Basque, English, Spanish, and Russian.

SIGMORPHON 2019 shared task (Aiken et al. 2019). Lemmatization is commonly
used when performing many NLP tasks such as information retrieval, named entity
recognition, sentiment analysis, word sense disambiguation, and so forth. For example,
for morphologically rich languages named entities are often inflected, which means
that lemmatization is required as an additional process. Thus, lemmatization is more
challenging for languages with rich inflection, as the number of variations for every
different word form in such languages is very high. Table 1 illustrates this point by
showing the differences in inflections of the word “cat” for four languages with different
morphological structure. This language sample offers a spectrum of varied complexity,
ranging from the more complex ones, Basque and Russian, to the less inflected ones,
such as Spanish and English, in that order.

As we can see in Table 1, the word “cat” can vary in English by changing from
singular to plural. In Spanish gender (masculine/feminine) is also marked. Things get
more complicated with languages that mark case. For example, in Russian there are six
cases and for Basque there are 16, some of which can be doubly inflected.

Both the context in which it occurs and the morphosyntactic form of a word play
a crucial role to approach automatic lemmatization (McCarthy et al. 2019). Thus, in
Figure 1 we can see a fragment of a Russian sentence in which each inflected word form
has a corresponding lemma (in red). Furthermore, each inflected form has an associated
number of morphosyntactic features (expressed as tags) depending on its case, number,
gender, animacy, and so on. Morphological analysis is crucial for lemmatization as it
explains the process required to produce the lemma from the word form, which is
why it has traditionally been used as a stepping stone to design systems to perform
lemmatization.

As in many other tasks in NLP, the first approaches to lemmatization were rule-
based, but nowadays the best performing models address lemmatization as a super-
vised task in which learning in context is crucial. Regardless of the learning method
used, three main trends can be observed in current contextual lemmatization: (i) those
that use gold standard or learned morphological tags to generate features to learn
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Figure 1
Example of a morphologically tagged and lemmatized sentence in Russian using the UniMorph
annotation scheme.

lemmatization in a pipeline approach (Chrupala, Dinu, and van Genabith 2008; Yildiz
and Tantuğ 2019); (ii) those that aim to jointly learn morphological tagging and lemma-
tization as a single task (Müller et al. 2015; Malaviya, Wu, and Cotterell 2019; Straka,
Straková, and Hajic 2019); and (iii) systems that do not use any explicit morphological
signal to learn to lemmatize (Chakrabarty, Pandit, and Garain 2017; Bergmanis and
Goldwater 2018).

Research on contextual (mostly neural) lemmatization was greatly accelerated by
the first release of the Universal Dependencies (UD) data (de Marneffe et al. 2014; Nivre
et al. 2017), but especially by the contextual lemmatization shared task organized at
SIGMORPHON 2019, which included UniMorph datasets for more than 50 languages
(McCarthy et al. 2019). It should be noted that the best models in the task used morpho-
logical information either as features (Yildiz and Tantuğ 2019) or as part of a joint or a
multitask approach (Straka, Straková, and Hajic 2019). However, the large majority of
previous approaches have used all the morphological tags from UniMorph/UD assum-
ing that fine-grained morphological information must be always beneficial for lemma-
tization, especially for highly inflected languages, but without analyzing whether that
is the optimum in terms of downstream performance.

In order to address this issue, in this article we empirically investigate the role of
morphological information to develop contextual lemmatizers in six languages within a
varied spectrum of morphological complexity: Basque, Turkish, Russian, Czech, Span-
ish, and English. Furthermore, previous work has shown that morphological taggers
substantially degrade when evaluated out-of-domain, be that any type of text different
from the data used for training in terms of topic, text genre, temporality, and so forth.
(Manning 2011). This point led us to research whether lemmatizers based on fine-
grained morphological information will degrade more when used out-of-domain than
those requiring only coarse-grained UPOS tags. We believe that this is also an important
point because lemmatizers are mostly used out-of-domain, namely, to lemmatize data
from a different distribution with respect to the one that was used for training.

Taking these issues into consideration, in this article we set to investigate the fol-
lowing research questions with respect to the actual role of morphological information
to perform contextual lemmatization. First, is fine-grained morphological information
really necessary, even for high-inflected languages? Second, are modern context-based
word representations enough to learn competitive contextual lemmatizers without
including any explicit morphological signal for training? Third, do morphologically
enriched lemmatizers perform worse out-of-domain as the complexity of the mor-
phological features increases? Fourth, what is the optimal strategy to obtain robust
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contextual lemmatizers for out-of-domain settings? Finally, are current evaluation
practices adequate to meaningfully evaluate and compare contextual lemmatization
techniques?

The conclusions from our experimental study are the following: (i) fine-grained
morphological features do not always benefit, not even for agglutinative languages;
(ii) modern contextual word representations seem to implicitly encode enough mor-
phological information to obtain state-of-the-art contextual lemmatizers without seeing
any explicit morphological signal; (iii) the best lemmatizers out-of-domain are those
using simple UPOS tags or those trained without explicit morphology; (iv) current
evaluation practices for lemmatization are not adequate to clearly discriminate between
models, and other evaluation metrics are required to better understand and manifest the
shortcomings of current lemmatization techniques. The generated code and datasets are
publicly available to facilitate the reproducibility of the results and further research on
this topic.1

The rest of the article is structured as follows. The next section discusses the most
relevant work related to contextual lemmatization. The systems and datasets used in
our experiments are presented in Sections 4 and 3, respectively. Section 5 presents
the experimental setup applied to obtain the results, which are reported in Section 6.
Section 7 provides a discussion and error analysis of the results. We finish with some
concluding remarks in Section 8.

2. Background

First approaches to lemmatization consisted of systems based on dictionary lookup
and/or rule-based finite state machines (Karttunen, Kaplan, and Zaenen 1992; Oflazer
1993; Alegria et al. 1996; van den Bosch and Daelemans 1999; Dhonnchadha 2002;
Segalovich 2003; Carreras et al. 2004; Stroppa and Yvon 2005; Jongejan and Dalianis
2009). Grammatical rules in such systems, either hand-crafted or learned automati-
cally by using machine learning, were leveraged to perform lemmatization together
with the use of lexicons or morphological analyzers that returned the correct lemma.
The problem of unseen and rare words was solved by generating a set of exceptions
added to the general set of rules (Karttunen, Kaplan, and Zaenen 1992; Oflazer 1993)
or by using a probabilistic approach (Segalovich 2003). Such systems resulted in very
language-dependent approaches, and in most of the cases they required huge linguistic
knowledge and effort, especially in the case of those languages with more complex,
high-inflected morphology.

The appearance of large annotated corpora with morphological information and
lemmas facilitated the development of machine learning methods for lemmatization
in multiple languages. One of the core projects that gathered annotated corpora for
more than 90 languages is the Universal Dependencies (UD) initiative (Nivre et al.
2017). This project offers a unified morphosyntactic annotation across languages with
language-specific extensions when necessary. Based on the UD data, the Universal
Morphology (UniMorph) project (McCarthy et al. 2020) converted the UD annota-
tions into UniMorph, a universal tagset for morphological annotation (based on Sylak-
Glassman [2016]), where each inflected word form is associated with a lemma and a
set of morphological features. The current UniMorph dataset includes 118 languages,
including extremely low-resourced languages such as Quechua, Navajo, and Haida.

1 https://github.com/oltoporkov/morphological-information-datasets.
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The assumption that context could help with unseen and ambiguous words led to
the creation of supervised contextual lemmatizers. The pioneer work on this topic is per-
haps the statistical contextual lemmatization model provided by Morfette (Chrupala,
Dinu, and van Genabith 2008). Morfette uses a Maximum Entropy classifier to predict
morphological tags and lemmas in a pipeline approach. Interestingly, instead of learn-
ing the lemmas themselves, Chrupala, Dinu, and van Genabith (2008) propose to learn
automatically induced lemma classes based on the shortest edit script (SES), which con-
sists of the number of edits necessary to convert the inflected word form into its lemma.
Morfette has influenced many other works on contextual lemmatization, such as the
system of Gesmundo and Samardžić (2012), IXA pipes (Agerri, Bermudez, and Rigau
2014; Agerri and Rigau 2016), Lemming (Müller et al. 2015), and the system of Malaviya,
Wu, and Cotterell (2019). The importance of using context to learn lemmatization is
investigated in the work of Bergmanis and Goldwater (2018). They compare context-
free and context-sensitive versions of their neural lemmatizer Lematus and evaluate
them across 20 languages. Results show that including context substantially improves
lemmatization accuracy and it helps to better deal with the out-of-vocabulary problem.

The next step in the development of contextual lemmatization systems came with
the supervised approaches based on deep learning algorithms and vector-based word
representations (Chakrabarty, Pandit, and Garain 2017; Dayanik, Akyürek, and Yuret
2018; Bergmanis and Goldwater 2018; Malaviya, Wu, and Cotterell 2019). The parallel
development of the transformer architecture (Vaswani et al. 2017) and the appearance
of BERT (Devlin et al. 2019) and other transformer-based masked language models
(MLMs) offered the possibility to significantly improve lemmatization results. Thus,
most of the participating systems in the SIGMORPHON 2019 shared task on contextual
lemmatization for 66 languages were based on MLMs (McCarthy et al. 2019). The
baseline provided by the task was based on the work of Malaviya, Wu, and Cotterell
(2019), a system that performs joint morphological tagging and lemmatization.

To the best of our knowledge, current state-of-the-art results in contextual lemma-
tization are provided by those models that achieved best results in the SIGMOR-
PHON 2019 shared task. The highest overall accuracy was achieved by UDPipe (Straka,
Straková, and Hajic 2019). Using UDPipe 2.0 (Straka 2018) as a baseline, they added
pre-trained contextualized BERT and Flair embeddings as an additional input to the
network. The overall accuracy (average across all languages) was 95.78, the best among
all the participants.

The second-best result (95 overall word accuracy) in the task was obtained by the
CHARLES-SAARLAND system (Kondratyuk 2019). This system consists of a combina-
tion of a shared BERT encoder and joint lemma and morphology tag decoder. The model
uses a two-stage training process, in which it first performs a multilingual training
over all treebanks, and then executes the same process monolingually, maintaining the
previously learned multilingual weights. Morphological tags in this case are calculated
jointly and lemmas are also represented as SES. The experiments are performed using
multilingual BERT in combination with the methods introduced by UDify (Kondratyuk
and Straka 2019) for BERT fine-tuning and regularization.

The third best result (94.76) was reported by Morpheus (Yildiz and Tantuğ 2019).
Morpheus uses a two-level LSTM network which gets as input the vector-based rep-
resentations of words, morphological tags, and SES. Morpheus then aims to jointly
output, for a given sequence, their corresponding morphological labels and the SES
representing the lemma class, which is later decoded into its lemma form.

Thus, it can be seen that a common trend in current contextual lemmatization is
to use the morphological information provided by the full UniMorph labels without
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taking into consideration whether this is the optimal setting. Furthermore, lemmati-
zation techniques are only evaluated in-domain, resulting in extremely, and perhaps
deceptive, high results for the large majority of the 66 languages included in the SIG-
MORPHON 2019 data.

3. Languages and Datasets

In order to address the research questions formulated in the Introduction, we selected
the following six languages: Basque, Turkish, Russian, Czech, Spanish, and English.
Such a choice will allow us to compare the role of fine-grained morphological in-
formation to learn contextual lemmatization within a range of languages of varied
morphological complexity. In this section we briefly describe general morphological
characteristics of each language as well as the specific datasets used.

3.1 Languages

Basque and Turkish are agglutinative languages with morphology mostly of the suf-
fixing type. Basque is a language isolate and does not belong to any language group,
and Turkish is a member of the Oghuz group of the Turkic family. These two languages
have no grammatical gender, with some particular exceptions for domestic animals,
people, and foreign words (Turkish) or in some colloquial forms when the gender of the
addressee is expressed for the second person singular pronoun (Basque). Turkish and
Basque have two number types (singular and plural), and in Basque there is also the
unmarked number (undefined or mugagabea). In both Turkish and Basque the cases are
expressed by suffixation.

Basque is an ergative-absolutive language containing 16 cases, meaning that the
grammatical case marks both the subject of an intransitive verb and the object of a
transitive verb. The verb conjugation is also specific for this language: The majority
of the verbs are formed by a combination of a gerund form and a conjugated auxiliary
verb.

Turkish has six general cases; nouns and adjectives are not distinguished mor-
phologically and adjectives can also be used as adverbs without modifications or by
doubling of the word. For verbs there are 9 simple and 20 compound tenses. There is a
relatively small set of core vocabulary and the majority of Turkish words originate from
applying derivative suffixes to nouns and verbal stems.

The two Slavic languages, Russian and Czech, which have a fusional morphological
system, exhibit a highly inflectional morphology and a wide number of morphological
features. Russian belongs to the East Slavic language group, while Czech is a West
Slavic language. These two languages have nominal declension that involves 6 main
grammatical cases for Russian and 7 for Czech. Both languages distinguish between
two number (singular and plural) and three gender types (masculine, feminine, and
neuter). Furthermore, the masculine gender is subdivided into animate and inanimate.
Verbs are conjugated for tense (past, present, or future) and mood.

Spanish is a Romance language that belongs to the Indo-European language family.
It is a fusional language, which has a tendency to use a single inflectional morpheme to
denote multiple grammatical, syntactic, or semantic features. Nouns and adjectives in
Spanish have two gender (male, female) and two number types (singular and plural).
Additionally, some articles, pronouns, and determiners also possess a neuter gender.
There are 3 main verb tenses (past, present, and future) and each verb has around fifty
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conjugated forms. Apart from that, Spanish has 3 verboid forms (infinitive, gerund,
past participle), perfective and imperfective aspects for past, 4 moods, and 3 persons.

Finally, English is a Germanic language, also part of the Indo-European language
family. It has lower inflection in comparison to previously mentioned languages. Only
nouns, pronouns, and verbs are inflected, while the rest of the parts of speech are invari-
able. In English, animate nouns have two genders (masculine or feminine) and the third-
person singular pronouns distinguish three gender types: masculine, feminine, and
neuter, while for most of the nouns there is no grammatical gender. Nouns have only
a genitive case and personal pronouns are mostly declined in subjective and objective
cases. English has a variety of auxiliary verbs that help to express the categories of mood
and aspect and participate in the formation of verb tenses.

3.2 Datasets

The datasets we used are distributed as part of the data used for the SIGMORPHON
2019 shared task (McCarthy et al. 2019). The source of the original datasets comes
from the UD project (de Marneffe et al. 2014), but the morphological annotations are
converted from UD annotations to the UniMorph schema (Kirov et al. 2018) with the
aim of increasing agreement across languages. As our experiments will include both
in-domain and out-of-domain evaluations, we selected some datasets for each of the
settings.

With respect to in-domain, we chose one corpus per language using the standard
train and development partitions. For Basque we used the Basque Dependency Tree-
bank (BDT) (Aldezabal et al. 2008), which contains mainly literary and journalistic
texts. The corpus was manually annotated and then automatically converted to UD
format. For Czech we used the CAC treebank (Hladká et al. 2008) based on the Czech
Academic Corpus 2.0. This corpus includes mostly unabridged articles from a wide
range of media such as newspapers, magazines, and transcripts of spoken language
from radio and TV programs. The corpus was annotated manually and then converted
to UD format. With respect to English we chose English Web Treebank (EWT) (Silveira
et al. 2014). This corpus includes different Web sources: blogs, various media, e-mails,
reviews, and Yahoo! answers. In the EWT corpus the lemmas were assigned by UD-
converter and manually corrected. UPOS tags were also converted to UD format from
manual annotations. For Russian we used the GSD corpus, extracted from Wikipedia
and manually annotated by native speakers. In the case of Spanish we selected the GSD
corpus as well, consisting of texts from blogs, reviews, news, and Wikipedia. Finally,
for Turkish we used ITU-METU-Sabanci Treebank (IMST) (Sulubacak et al. 2016). It
consists of well-edited sentences from a wide range of domains, manually annotated
and automatically converted to UD format.

For the out-of-domain evaluation setting we picked the test sets of other datasets
included in UniMorph, different from the ones selected for in-domain experimentation.
In the case of Basque, only one corpus was available in the UD project, so we used
the Armiarma corpus, which consists of literary critics semi-automatically annotated
using Eustagger (Alegria et al. 1996). For Czech and Turkish we used the PUD data—
part of the Parallel Universal Dependencies treebanks created for the CoNLL 2017
shared task (Zeman et al. 2017). The corpora consist of 1,000 sentences from the news
domain and Wikipedia annotated for 18 languages. The Czech language PUD data was
manually annotated and then automatically converted to UD format. For Turkish the
original data was automatically converted to UD format, but later manually reannotated
(Türk et al. 2019). In the case of English we used the Georgetown University Multilayer
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(GUM) corpus (Zeldes 2017). This corpus presents a collection of annotated Web texts
from interviews, news, travel guides, academic writing, biographies, and fiction from
such sources as Wikipedia, Wikinet, and Reddit. Its lemmas were manually annotated,
while UPOS tags were converted to UD format from manual annotations. In the case
of Russian we used SynTagRus (Lyashevkaya et al. 2016), which consists of texts from
a variety of genres, such as contemporary fiction, popular science, as well as news and
journal articles from the 1960–2016 period. Its lemmas, UPOS tags, and morphological
features were manually annotated in non-UD style and then automatically converted to
UD format. For Spanish we chose the AnCora corpus (Taulé, Martı́, and Recasens 2008),
which contains mainly texts from news. All the elements of this corpus were converted
to UD format from manual annotations.

4. Systems

In this section we present the systems that we will be applying in our investigation.
First, research on the role of fine-grained morphological information for contextual
lemmatization will be performed in-domain using the statistical lemmatizer from the
IXA pipes toolkit (Agerri and Rigau 2016) and Morpheus, the third best system in the
SIGMORPHON 2019 shared task. These two systems were chosen for several reasons:
(i) both use morphological information as features to learn lemmatization; (ii) both
systems use SES to represent automatically induced lemma classes; and (iii) they both
address contextual lemmatization as sequence tagging.

In order to investigate whether modern contextual word representations are enough
to learn competitive lemmatizers both in- and out-of-domain, we train baseline models
using Flair (Akbik, Blythe, and Vollgraf 2018), multilingual MLMs mBERT and XLM-
RoBERTa (Devlin et al. 2019; Conneau et al. 2020), as well as language-specific MLMs
for each of the languages: BERTeus for Basque (Agerri et al. 2020), slavicBERT for Czech
(Arkhipov et al. 2019), RoBERTa for English (Liu et al. 2019), Russian ruBERT (Kuratov
and Arkhipov 2019), Spanish BETO (Cañete et al. 2020), and BERTurk for Turkish.2 As
with Morpheus and IXA pipes, we treat contextual lemmatization as a sequence tagging
task and fine-tune the language models by adding a single linear layer to the top of the
model. The experiments were implemented using the HuggingFace Transformers API
(Wolf et al. 2020).

4.1 Systems Using Morphology

IXA pipes is a set of multilingual tools which is based on a pipeline approach (Agerri,
Bermudez, and Rigau 2014; Agerri and Rigau 2016). IXA pipes learn perceptron (Collins
2002) models based on shallow local features combined with pre-trained clustering
features induced over large unannotated corpora. The lemmatizer implemented in IXA
pipes is inspired by the work of Chrupala, Dinu, and van Genabith (2008), where the
model learns the SES between the word form and its lemma. IXA pipes are able to learn
lemmatization using gold-standard or learned morphological tags.

Morpheus is a neural contextual lemmatizer and morphological tagger that consists
of two separate sequential decoders for generating morphological tags and lemmas.
The input words and morphological features are encoded in context-aware vector
representations using a two-level LSTM network and the decoders predict both the

2 https://github.com/stefan-it/turkish-bert.
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morphological tags and the SES, which are later decoded into its lemma (Yildiz and
Tantuğ 2019). Morpheus obtained the third best overall result in the SIGMORPHON
2019 shared task (McCarthy et al. 2019).

4.2 Systems Without Explicit Morphological Information

We train a number of models that use modern contextual word representations by
addressing lemmatization as a sequence tagging task. Thus, the input consists of words
encoded as contextual vector representations and the task is to assign the best sequence
of SES to a given input sequence.

Flair is a NLP framework based on a BiLSTM-CRF architecture (Huang, Xu, and
Yu 2015; Ma and Hovy 2016) and pre-trained language models that leverage character-
based word representations that, according to the authors, capture implicit information
about natural language syntax and semantics. Flair has obtained excellent results in
sequence labeling tasks such as named entity recognition, POS tagging, and chunking
(Akbik, Blythe, and Vollgraf 2018). The library includes pre-trained Flair language
models for every language except Turkish.

With respect to the MLMs, we use two multilingual models and 6 language models
trained specifically for each of the languages included in our study. Multilingual BERT
(Devlin et al. 2019) is a transformer-based masked language model, pre-trained on
the Wikipedias of 104 languages with both the masking and next sentence prediction
objectives. Furthermore, we also use XLM-RoBERTa (Conneau et al. 2020), trained on
2.5TB (295K millions of tokens) of filtered CommonCrawl data for 100 languages. XLM-
RoBERTa is based on the BERT architecture but (i) trained only on the MLM task, (ii) on
larger batches, (iii) on longer sequences, and (iv) with dynamic mask generation. Thus,
multilingual BERT was trained with a batch size of 256 and 512 sequence length for
1M steps, using both the MLM and NSP tasks. Regarding XLM-RoBERTa, both versions
(base and large) were trained over 1.5M steps with batch 8,192 and sequences of 512
length.

Details about the six language-specific MLMs used are provided in Table 2. BERTeus
(Agerri et al. 2020) is a BERT-base model trained on the BMC Basque corpus, which
includes the Basque Wikipedia and news articles from online newspapers. Apart from
the training data, the other difference from original BERT is the subword tokenization,
which is closer to linguistically interpretable strings in Basque. BERTeus significantly
outperforms multilingual BERT and XLM-RoBERTa in tasks such as POS tagging,
named entity recognition, topic modeling, and sentiment analysis.

BERTurk3 is a cased BERT-base model for Turkish. This model was trained on a
filtered and sentence segmented version of the Turkish OSCAR corpus (Ortiz Suárez,
Sagot, and Romary 2019), together with Wikipedia, various OPUS corpora (Tiedemann
2016), and data provided by Kemal Oflazer, which resulted in a total size of 35GB
(4,404M tokens total).

For Czech we used slavicBERT (Arkhipov et al. 2019), developed by taking multi-
lingual BERT as a basis and further pre-trained using Russian news and the Wikipedias
of four Slavic languages: Russian, Bulgarian, Czech, and Polish. The authors also rebuilt
the vocabulary of subword tokens, using the subword-nmt repository.4

3 https://github.com/stefan-it/turkish-bert.
4 https://github.com/rsennrich/subword-nmt/.
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Table 2
List of language-specific models used in the experiments for each of the target languages.

Language Model Architecture Training corpus and number of tokens
Basque BERTeus BERT 35M tokens (Wikipedia) + 191M tokens (online)
Czech slavicBERT BERT Russian news and Wikipedia in Russian,

Bulgarian, Czech, and Polish
English RoBERTa BERT BookCorpus (800M tokens),

CC-News (16,000M tokens),
OpenWebText (8,706M tokens),
CC-Stories (5,300M tokens)

Russian ruBERT BERT Dataset for original BERT
(BookCorpus(800M tokens)),
English Wikipedia (2,500M tokens),
Russian news and Wikipedia for subword
vocabulary

Spanish BETO BERT Wikipedia and OPUS project in Spanish
(3,000M tokens)

Turkish BERTurk BERT OSCAR corpus, Wikipedia, OPUS corpora,
corpus of Kemal Oflaizer (4,404M tokens total)

RuBERT was developed in a similar fashion as slavicBERT but only with Russian
as the target language using the Russian Wikipedia and news corpora (Kuratov and
Arkhipov 2019). They generated a new subword vocabulary obtained from subword-
nmt which contains longer Russian words and subwords.

For Spanish we used BETO (Cañete et al. 2020), a BERT-base language model,
trained on a large Spanish corpus. The authors of this model upgraded the initial
BERT model by using the Dynamic Masking technique, introduced in RoBERTa. BETO
performed 2M steps in two different stages: 900K steps with a batch size of 2,048 and
maximum sequence length of 128, and the rest of the training with a batch size of 256
and maximum sequence length of 512. We use the version trained with cased data,
which included the Spanish Wikipedia and various sources from the OPUS project
(Tiedemann 2012) in a final corpus size of around 3 billion words.

RoBERTa-base is the model chosen for English. RoBERTa (Liu et al. 2019) is an
optimized version of BERT, as commented above. To train this model the authors,
apart from the standard datasets used to train the BERT model, also used the CC-news
dataset, including English news articles from all over the world published between
January 2017 and December 2019. The total size of the training data exceeds 160GB
of uncompressed text (more than 30 billion tokens).

4.3 Baselines

We use two models as baselines. First, the system used as a baseline for the SIGMOR-
PHON 2019 shared task (McCarthy et al. 2019), a joint neural model for morphological
tagging and lemmatization presented by Malaviya, Wu, and Cotterell (2019). This sys-
tem performs morphological tagging by using a LSTM tagger described in Heigold,
Neumann, and van Genabith (2017) and Cotterell and Heigold (2017). The lemmatizer
is a neural sequence-to-sequence model (Wu and Cotterell 2019) which includes a hard
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attention mechanism with a training scheme based on dynamic programming. The
tagger and lemmatizer are connected together by jackknifing (Agić and Schluter 2017),
which allows us to avoid exposure bias and improve lemmatization results.

The second baseline is the winner of the SIGMORPHON’19 shared task (Straka,
Straková, and Hajic 2019). UDPipe is a multitask model which jointly learns morpholog-
ical tagging and lemmatization. The system architecture consists of three bidirectional
LSTMs that process the input and softmax classifiers that generate lemmas and mor-
phosyntactic features. Lemmatization is performed as a multiclass classification task,
where the system predicts the correct lemma rule or SES.

5. Experimental Setup

The systems described above were trained on the datasets listed in Section 3.2 using
the following methodology. For the two IXA pipes models (using gold-standard and
learned morphology) we used the default feature set, with and without clustering
features, specified in Agerri and Rigau (2016). The default hyperparameters were also
applied to train Morpheus (Yildiz and Tantuğ 2019). The input character embedding
length da is set to 128, the length of the word vectors de to 1,024, and the length of the
context-aware word vectors dc to 2,048. Moreover, the length of character vectors in
the minimum edit prediction component du and the length of the morphological tag
vectors dv are set to 256. The hidden unit sizes in the decoder LSTMs dg and dq are set
to 1,024. The Adam optimization algorithm is used with learning rate 3e-4 to minimize
loss (Kingma and Ba 2015).

Flair is used off-the-shelf with FastText CommonCrawl word embeddings (Grave
et al. 2018) combined with Flair contextual embeddings for each of the languages. The
hidden size of the LSTM is set to 256 with a batch of 16.

The MLMs were fine-tuned for lemmatization as a sequence tagging task by adding
a single linear layer on top of the model being fine-tuned. A grid search of hyperparam-
eters was performed to pick the best batch size (16, 32), epochs (5, 10, 15, 20, 25), and
learning rate (1e-0, 2e-5, 3e-5, 5e-5). We pick the best model on the development set in
terms of word accuracy and loss. A fixed seed is used to ensure reproducibility of the
results.

For multilingual BERT we used a maximum sequence length of 128, batch size 32,
and 5e-5 as learning rate while for XLM-RoBERTa we used the same configuration but
with a batch of 16. For Russian we perform grid search on two language-specific models,
namely, ruBERT and slavicBERT. RuBERT obtained the best results with a maximum
sequence length of 128, batch size 16, and a 5e-5 value for learning rate over 15 epochs.
For the rest of the models the best configuration was that of XLM-RoBERTa over 5
epochs for BETO and RoBERTa-base, 10 epochs for BERTeus, 15 epochs for BERTurk,
and 20 epochs with slavicBERT for Czech.

6. Experimental Results

In this section we present the experiments to empirically address the following research
questions with respect to the actual role of morphological information to perform
contextual lemmatization, namely: (i) Is fine-grained morphological information re-
ally necessary, even for agglutinative languages? (ii) Are modern context-based word
representations enough to learn competitive contextual lemmatizers without including
any explicit morphological signal during training? (iii) Do morphologically enriched
lemmatizers perform worse out-of-domain as the complexity of the morphological
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features increases? (iv) What is the optimal strategy to obtain robust contextual lem-
matizers for out-of-domain settings? and (v) Are current evaluation practices adequate
to meaningfully evaluate and compare contextual lemmatization techniques?

Unlike the vast majority of previous work on contextual lemmatization, which has
been mostly evaluated in-domain (McCarthy et al. 2019), we also report results in out-of-
domain settings. It should be noted that by out-of-domain we mean to evaluate the model
on a different data distribution from the data used for training (Manning 2011).

First, Section 6.1 studies the in-domain performance of contextual lemmatizers
depending on the type of morphological features used to inform the models during
training. The objective is two-fold: to determine whether complex (or any at all) mor-
phological information is required to obtain competitive lemmatizers and to establish
whether modern contextual word representations and MLMs allow us to perform
lemmatization without any morphological information.

Second, in the out-of-domain evaluation presented in Section 6.2 we analyze the
performance of morphologically informed lemmatizers. Furthermore, comparing them
with contextual lemmatizers developed without an explicit morphological signal would
allow us to obtain a full picture as to what is the best strategy for out-of-domain settings
(the most common application scenario).

6.1 In-domain Evaluations

For the first experiment we train the two variants of the IXA pipes statistical system,
ixa-pipe-gs and ixa-pipe-mm (Agerri and Rigau 2016), and one neural lemmatizer,
Morpheus (Yildiz and Tantuğ 2019). As explained in Section 4, all three require explicit
morphological information and they all apply the SES to automatically induced lemma
classes from the training data.

Furthermore, we combined the UniMorph morphological tags to generate labels of
different complexity. Thus, taking UPOS tags as a basis we obtain 5 different morpho-
logical tags, as shown in Table 3. The first 4 are combinations of UPOS, case, gender, and
number. The last label includes UPOS and every feature present for a given word in Uni-
Morph in the following order: {UPOS+Case+Gender+Number+Rest-of-the-features}.
For some word types, such as prepositions or infinitives, UniMorph only includes the
UPOS tag. In order to illustrate this, Table 4 provides an example originally in Russian
including the information required to train contextual lemmatizers, namely, the word,
some morphological tag, and the lemma.

Putting it all together, Table 5 characterizes the final datasets used for in- and out-of-
domain evaluation. The number of tokens, unique labels per category, and unique SES

Table 3
List of UniMorph morphological tags used.

Morphological label
UPOS
UPOS+Case+Gender
UPOS+Case+Number
UPOS+Case+Gender+Number
UPOS+AllFeaturesOrdered
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Table 4
An example of the data used to train contextual lemmatizers with morphological information.

Word form Morphological label {UPOS+Case+Gender} Lemma
[Project] NNOMMASC [project]

[a lot] ADV [a lot]
[differed] VMASC [to differ]

[ from] ADP [ from]
[previous] ADJGEN [previous]

[submarines] NGENFEM [submarine]
. .

Table 5
Language complexity reflected in the number of labels according to the augmentation of
morphological features, number of lemma classes and corpus tokens.

number upos+case upos upos SES
language corpus of upos +gender +allfeat. +allfeat. (lemma)

tokens +number ord. not.ord. class

Basque

train (BDT) 97,336 15 205 1,143 1,683 1,306
dev (BDT) 12,206 14 148 556 787 432
test (BDT) 11,901 14 153 545 773 428
test (Armiarma) 299,206 − − − − 1,495

Czech

train (CAC) 395,043 16 332 1,266 1,784 946
dev (CAC) 50,087 16 298 876 1,129 536
test (CAC) 49,253 15 284 827 1,036 556
test (PUD) 1,930 14 175 288 292 151

Russian

train (GSD) 79,989 14 241 851 1,384 553
dev (GSD) 9,526 14 191 435 673 235
test (GSD) 9,874 14 203 455 713 258
test (SynTagRus) 109,855 15 247 757 1,243 896

Spanish

train (GSD) 345,545 25 116 287 510 310
dev (GSD) 42,545 23 100 208 342 200
test (GSD) 43,497 23 103 222 387 200
test (AnCora) 54,449 15 75 178 309 298

English

train (EWT) 204,857 16 43 94 173 233
dev (EWT) 24,470 16 41 88 160 120
test (EWT) 25,527 16 41 85 156 115
test (GUM) 8,189 17 42 72 124 80

Turkish

train (IMST) 46,417 15 124 1,541 1,897 211
dev (IMST) 5,708 15 95 605 748 106
test (IMST) 5,734 16 100 589 725 104
test (PUD) 1,795 15 66 217 220 59
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(calculated using the UDPipe method) illustrate the varied complexity of the languages
involved.5 Thus, those languages with more complex morphology have a higher num-
ber of unique labels that include additional morphological features. The same pattern
can be seen in the amount of lemma classes (SES), significantly larger for the languages
with more complex morphology. In the case of Turkish the low number of lemmas could
be explained by the fact that most Turkish words are formed by applying derivative
suffixes to nouns and verbal stems. Moreover, the core vocabulary in this particular
corpus is rather small. Finally, we decided to order the subtags comprising the full
UniMorph labels as the number of unique labels decreased significantly.

Table 6 reports the in-domain results of training the three systems for the 6 lan-
guages with the 5 different types of morphological labels. First, the results show that
the neural lemmatizer Morpheus outperforms the statistical lemmatizers for every
language except English. In fact, for languages with more complex morphology, such
as Basque and Turkish, the differences are larger. Second, if we look at the impact
of including fine-grained morphological features, it can be seen that no single mor-
phological tag performs best across systems and languages. Thus, while adding case,
number, and/or gender seems to be slightly beneficial, differences in performance are
substantial when training the statistical lemmatizer using gold-standard morphologi-
cal labels (ixa-pipe-gs) and especially for languages with more complex morphology
(Basque, Russian, Turkish). Third, the results clearly show that adding every available
morphological feature is not beneficial per se. Fourth, the statistical lemmatizer trained
with learned morphological tags (ixa-pipe-mm) performs significantly worse in every
case except for English and Spanish. Finally, adding a special label “no-tag” with no
morphological information shows that performance decreases significantly for every
system and language.

Summarizing, in-domain performance for high-inflected languages improves when
some fine-grained morphological attributes (case and number or gender) are used to
train the statistical lemmatizers. However, for English and Spanish using UPOS seems
to be enough. Thus, in the case of neural lemmatization with Morpheus (the best of
the models using morphological information), we can see that no substantial gains are
obtained by adding fine-grained morphological features to UPOS tags, not even for
agglutinative languages such as Basque or Turkish.

This point is reinforced by the results of computing the McNemar test of statistical
significance to establish whether the differences in the results obtained by Morpheus
(the best among the models trained with morphology) informed only with UPOS labels
or with the best morphological label (as by Table 6 above) are statistically significant
or not (null hypothesis). The result of the test showed that for every language the
differences were not significant (α = .05, with 0.936 p-value for Basque, 0.837 for Czech,
0.511 for Russian, and 0.942 for Spanish).

Taking this into consideration, the next natural step is to consider whether it is pos-
sible to learn good contextual lemmatizers without providing any explicit morpholog-
ical signal during training. Previous work on probing contextual word representations

5 Even though it is not required for out-of-domain evaluation, the UniMorph information is not available
for the Basque Armiarma corpus because it is not part of the UniMorph project.
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Table 6
In-domain lemmatization results on the development sets for systems that use morphology to
train contextual lemmatizers. ixa-mm: IXA pipes with learned morphological tags; ixa-gs: IXA
pipes with gold standard morphology; morph = Morpheus; UCG: UPOS+Case+Gender, UCN:
UPOS+Case+Number, UCGN:UPOS+Case+Gender+Number: UALLo:
UPOSAllFeaturesOrdered.

English
no-tag UPOS UCG UCN UCGN UAllo

ixa-mm – 98.97 98.97 99.03 98.97 98.86
ixa-gs 96.98 99.51 99.49 99.58 99.59 99.65
morph 97.60 98.20 98.12 98.13 98.19 98.14

Spanish
ixa-mm – 98.75 98.74 98.71 98.78 98.74
ixa-gs 98.36 98.82 98.78 98.82 98.80 98.88
morph 98.17 98.09 98.93 98.96 98.92 98.91

Russian
ixa-mm – 94.85 95.37 95.69 95.50 95.53
ixa-gs 91.85 95.05 96.95 96.45 96.99 97.04
morph 96.50 96.92 96.91 97.10 97.18 97.24

Basque
ixa-mm – 93.19 93.22 93.14 93.30 93.49
ixa-gs 91.68 93.50 94.33 94.58 94.58 96.50
morph 95.48 96.30 96.43 96.54 96.37 96.42

Czech
ixa-mm – 97.76 97.17 97.29 97.10 97.10
ixa-gs 95.64 97.68 98.10 97.93 98.09 98.20
morph 98.37 98.78 98.84 98.83 98.82 98.80

Turkish
ixa-mm – 84.83 84.51 85.06 85.06 83.95
ixa-gs 85.97 88.81 88.89 89.14 89.14 90.52
morph 96.04 96.41 96.53 95.95 96.27 96.50

and transformer-based MLMs suggests that such models implicitly encode information
about part-of-speech and morphological features (Manning et al. 2020; Akbik, Blythe,
and Vollgraf 2018; Conneau et al. 2018; Belinkov et al. 2017). Following this, for this
experiment we fine-tune various well-known multilingual and monolingual language
models (detailed in Section 4) by using only the word forms and the automatically
induced SES as implemented by UDPipe (Straka, Straková, and Hajic 2019).

Figure 2 reports the results. From left-to-right, the first three bars correspond to
the best statistical and Morpheus models using explicit morphological information as
previously reported in Table 6. The next four list the results from Flair, mBERT, XLM-
RoBERTa-base, and a language-specific monolingual model (none of these four use
any explicit morphological signal) whereas base (dark purple) refers to the system of
Malaviya, Wu, and Cotterell (2019), used as a baseline for the SIGMORPHON 2019
shared task (McCarthy et al. 2019). For state-of-the-art comparison, the last column on
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Figure 2
Overall in-domain lemmatization results on the test data for models trained with and without
explicit morphological features; monolingual transformers: Russian - ruBERT, Czech -
slavicBERT, Basque - BERTeus, Turkish - BERTurk, English - RoBERTa, Spanish - BETO.

the right provides the results from UDPipe (Straka, Straková, and Hajic 2019) (light
purple color). Finally, the dark blue bars represent the best result for each language
without considering either the baseline system or UDPipe.

The first noticeable trend is that every model beats the baseline except the IXA
pipes-based statistical lemmatizers, which perform over the baseline and comparatively
to the other models for English and Spanish only, the languages with the less complex
morphology.

The second and, perhaps, most important fact is that the four models (Flair, mBERT,
XLM-RoBERTa, and mono) that do not use any morphological signal for training obtain
a remarkable performance across languages, XLM-RoBERTa-base being the best overall,
even better than language-specific monolingual models. In fact, XLM-RoBERTa-base
outperforms Morpheus for 4 out of the 6 languages, a neural model which was the third
best system in the SIGMORPHON 2019 benchmark and which uses all the morpho-
logical information available in the UniMorph data. The McNemar test of significance
shows that the differences in results obtained by Morpheus and XLM-RoBERTa are
statistically significant (α = .05) for Russian, Spanish, and English (in XLM-RoBERTa’s
favor), and for Basque and Turkish (Morpheus over XLM-RoBERTa).

An additional observation is that our XLM-RoBERTa-base lemmatization models
perform competitively with respect to UDPipe, which obtains the best results for 5 out
of the 6 languages included in our study. UDPipe’s strong performance is somewhat
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expected as it was the overall winner of the SIGMORPHON 2019 lemmatization task. It
should be noted that UDPipe is a rather complex system consisting of a multitask model
to predict POS tags, lemmas, and dependencies by applying three shared bidirectional
LSTM layers which take as input a variety of word and character embeddings, the
final model being an ensemble of 9 possible embedding combinations. However, the
results obtained by the language models we trained without any explicit morphological
signal, such as XLM-RoBERTa-base, are based on a simple baseline setting, where the
transformer models are fine-tuned using the automatically induced SES as the target
labels in a token classification task. These results seem to confirm that, as it was the case
for POS tagging and other tasks (Manning et al. 2020), contextual word representations
implicitly encode morphological information which made them perform strongly for
lemmatization.

However, we can see that for agglutinative languages such as Basque and Turkish,
the neural models using explicit morphological features (Morpheus, Malaviya et al.
2019, and UDPipe) still outperform those without it (although for Basque the differ-
ences are much smaller). Still, the overall results show that, apart from Basque and
Turkish, differences between XLM-RoBERTa and the best model for each language are
rather minimal. This demonstrates that it is possible to generate competitive contextual
lemmatization without any explicit morphological information using a very simple
technique, although a more sophisticated approach or larger language model may be
required to be competitive with the state-of-the-art currently represented by UDPipe.

6.2 Out-of-domain Evaluation

Although lemmatizers are mostly used out-of-domain, the large majority of the exper-
imental results published so far do not take this issue into account when evaluating
approaches to contextual lemmatization. In this section we empirically investigate the
out-of-domain performance of the lemmatizers from the previous section to establish
whether: (i) using fine-grained morphological information causes cascading errors in
the lemmatization performance; (ii) the lack of morphological information helps to
obtain more robust lemmatizers across domains.

For a better comparison, Table 7 presents both the in-domain results presented in
the previous section together with their corresponding out-of-domain performance on
the datasets presented in Section 3.

Table 7 allows us to see the general trend in performance across domains and with
respect to the type of morphological information used. First, and, as expected, out-of-
domain performance is substantially worse for every evaluation setting and particularly
significant for highly inflected languages. Second, in terms of the type of morphological
label, there are no clear differences between the models using just UPOS tags or those
using more fine-grained information, the exception being Russian and Turkish with the
ixa-pipe-mm system, for which the highest result with {UPOS+Case+Number} is around
1 point in word accuracy better than UPOS. Furthermore, there is not a common type of
morphological information that works best across languages. Third, while the statistical
lemmatizers are competitive for Spanish and English, they are clearly inferior for Basque
and Turkish. Finally, when looking at the results in terms of the models using gold-
standard morphological annotations (ixa-pipe-gs and Morpheus), it is interesting that
they degrade less out-of-domain than the model using learned morphological tags for
most of the cases except for Russian. Summarizing, we can conclude that adding fine-
grained morphological information to UPOS does not in general result in better out-of-
domain performance.
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Table 7
In-domain and out-of-domain test results for systems trained with explicit morphological
information: ixa-mm: IXA pipes with learned morphological tags; ixa-gs: IXA pipes with gold
standard morphology; morph: Morpheus; UCG: UPOS+Case+Gender, UCN:
UPOS+Case+Number, UCGN: UPOS+Case+Gender+Number: UALLo:
UPOSAllFeaturesOrdered. Underline: Best model per language and type of label; ∗: best overall
per language.

IN-DOMAIN OUT-OF-DOMAIN
NO TAG

ixa-mm ixa-gs morph ixa-mm ixa-gs morph
en – 96.34 97.51 – 90.40 92.47
es – 98.53 98.17 – 89.75 89.70
ru – 92.81 95.31 – 83.95 86.84
eu – 90.61 95.69 – 85.64 88.25
cs – 96.37 98.31 – 91.50 91.61
tr – 87.11 95.62 – 77.16 84.07

UPOS
ixa-mm ixa-gs morph ixa-mm ixa-gs morph

en 99.11∗ 98.91 98.10 95.38∗ 95.25 92.92
es 98.91 98.76 98.94 97.53 97.41 90.29
ru 94.36 93.74 96.20 90.00 89.40 87.59
eu 93.11 92.29 96.39 85.22 86.79 88.97
cs 97.86 97.28 98.75 92.33 93.68 91.66
tr 84.65 87.76 96.44∗ 79.22 81.67 84.96∗

UCG
ixa-mm ixa gs morph ixa-mm ixa-gs morph

en 99.10 98.92 97.99 95.20 95.24 92.97
es 98.94 98.70 98.98 97.54 97.43 90.31
ru 94.85 93.30 96.21 90.97 89.33 87.67
eu 92.65 92.39 96.34 85.23 86.74 89.09
cs 97.29 96.64 98.76∗ 91.61 91.35 91.92
tr 85.09 87.09 96.18 80.06 81.23 84.74

UCN
ixa-mm ixa-gs morph ixa-mm ixa-gs morph

en 99.06 98.87 98.01 95.16 95.16 92.86
es 98.92 98.75 99.02∗ 97.56 97.44 90.35
ru 95.07 93.70 96.20 91.00∗ 89.60 87.58
eu 93.03 92.35 96.39 85.47 86.36 89.03
cs 97.44 96.87 98.71 91.04 92.07 92.23∗

tr 85.52 87.18 96.11 80.33 81.00 84.40
UCGN

ixa-mm ixa-gs morph ixa-mm ixa gs morph
en 99.08 98.96 97.99 95.21 95.15 92.95
es 98.89 98.71 98.97 97.59∗ 97.44 90.38
ru 95.00 93.08 96.44∗ 90.80 89.13 87.66
eu 93.03 92.28 96.39 85.38 86.55 88.86
cs 97.17 96.68 98.70 91.71 91.50 91.97
tr 85.52 87.18 96.20 80.33 81.00 84.46

UAllo
ixa-mm ixa-gs morph ixa-mm ixa-gs morph

en 99.04 98.95 98.06 95.08 95.13 93.15
es 98.86 98.74 99.00 97.54 97.45 90.34
ru 94.75 93.22 96.30 90.88 88.66 87.57
eu 93.41 94.06 96.50∗ 85.33 86.31 89.11∗

cs 97.03 96.63 98.70 91.19 91.81 92.02
tr 84.90 86.57 96.22 79.39 80.50 84.96
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Following this, we would like to evaluate the out-of-domain performance when
not even UPOS labels are used for training. From what we have seen in-domain, the
systems that operate without morphology achieve competitive results with respect to
the models using morphological information. Figure 3 provides an overview of both
the in- and out-of-domain results obtained for both types of systems, confirming this
trend. Thus, it is remarkable that the XLM-RoBERTa model scores best out-of-domain
for Turkish and Czech, and a very close second in Russian. The results for Spanish and
English deserve further analysis, as the IXA pipes statistical models clearly outperform
every other system for these two languages, with the differences around 7 points in
word accuracy.

Figure 3
Overall in-domain and out-of-domain results.
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Figure 4
Overall in- and out-of-domain results in the reversed setting.

Figure 46 presents the reversed results of those presented in Figure 3, namely, the
test set of the in-domain corpora becomes the out-of-domain test data while the models
are fine-tuned on the training split of the out-of-domain data. Doing this experiment
allows us to discard that the out-of-domain behavior exhibited in previous results could
be due to differences in size between the training in-domain data and the testing out-of-
domain test sets. Good examples of this are Russian and Spanish, for which SynTagRus
and AnCora are used as in-domain data in the reversed setting. These two datasets
are much larger than the GSD corpora for those languages (used as in-domain data in

6 Basque is not present in this evaluation due to the fact that the Armiarma corpus does not include
UniMorph annotations.
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the original setting). Thus, results in the reversed setting demonstrate that: (i) out-of-
domain performance worsens substantially regardless of the language and model; (ii)
language models fine-tuned without explicit morphological information outperform
every other model for all languages except Turkish for the in-domain evaluation setting;
and (iii) the out-of-domain results of XLM-RoBERTa-base are the best for Russian and
Czech and similar to other models in English and Spanish.

In any case, Figures 3 and 4 show that the results of every model significantly
degrade when evaluated out-of-domain, the most common application of lemmatizers.
Thus, even for high-scoring languages such as English and Spanish, out-of-domain
performance worsens between 3 and 5 points in word accuracy. For high-inflected
languages the differences are around 8 for Basque and more than 10 for Turkish.

Given that pre-trained language models such as XLM-RoBERTa-base can be lever-
aged to learned competitive lemmatizers without using any explicit morphological
signal, we propose a final experiment to address the following two additional research
questions. First, will lemmatization results get closer to the state-of-the-art by using a
larger transformer-based model such as XLM-RoBERTa-large? Second, can we improve
the performance of a language model such as XLM-RoBERTa by adding morphological
information during fine-tuning?

Table 8 shows the results of experimenting with XLM-RoBERTa-base and XLM-
RoBERTa-large to learn lemmatization as a sequence labeling task with and without
adding morphology as explicit handcrafted features. For each language we pick the
best morphological configuration from Table 7 and encode the morphological labels
as feature embeddings. Both feature and encoded text embeddings are then sent into
a softmax layer for sequence labeling (Wang et al. 2022). The first observation is that
the large version of XLM-RoBERTa obtains the best results both in- and out-of domain.
It is particularly noteworthy that fine-tuning XLM-RoBERTa-large with only the SES
classes helps to outperform any other model for every language and evaluation setting.
Furthermore, adding morphology as a feature seems to be beneficial. In fact, the mor-
phologically informed models are the best in 4 out of 6 in-domain evaluations and for
all 6 out-of-domain cases.

We compute the McNemar test to establish whether the differences obtained with
and without morphological features are actually statistically significant. It turns out

Table 8
In- and out-of-domain results for XLM-RoBERTa-base and XLM-RoBERTa-large models with
and without morphological features during training.

xlm-r base xlm-r large
in-domain out-of-domain in-domain out-of-domain

without with without with without with without with
morph. morph. morph. morph. morph. morph. morph. morph.

en 98.76 98.74 93.56 93.72 98.85 98.92 93.82 93.86
es 99.08 99.10 90.26 90.42 99.12 99.15 90.48 90.53
eu 95.98 96.45 88.15 88.60 96.66 96.70 88.75 88.81
ru 97.08 97.25 90.53 90.92 97.63 97.96 91.60 91.71
cz 99.25 99.32 95.18 94.72 99.40 99.23 95.42 96.06
tr 95.38 95.19 84.90 85.34 96.30 96.13 85.18 85.40

177



Computational Linguistics Volume 50, Number 1

that for XLM-RoBERTa-large, results are rather mixed. Thus, only for Russian (p-value
0.003) and Czech (0.000) are the results significant atα = .05. For Turkish and Basque the
results are not conclusive (p-value 0.0495) while for the rest the null hypothesis cannot
be rejected (0.423 for Spanish, 0.242 in English, and 0.547 in Basque). Regarding XLM-
RoBERTa-base, in 4 out of 6 languages the results are statistically significant at α = .01
(the McNemar test), failing to reject the null hypothesis for Russian and Turkish.

To sum up, our experiments empirically demonstrate that fine-grained morpholog-
ical information to train contextual lemmatizers does not lead to substantially better in-
or out-of-domain performance, not even for languages of varied complex morphology,
such as Basque, Czech, Russian, and Turkish. Thus, only for Basque and Turkish did
Morpheus (using UPOS tags) outperform XLM-RoBERTa models.

Taking this into account, and as previously hypothesized for other NLP tasks
(Manning et al. 2020), modern contextual word representations seem to implicitly cap-
ture morphological information valuable to train lemmatizers without requiring any
explicit morphological signal. We have proved this by training off-the-shelf language
models to perform lemmatization as a token classification task obtaining state-of-the-
art results for Russian and Czech, and very close performance to UDPipe in the rest.
Finally, statistical models are only competitive to perform contextual lemmatization on
languages with a morphology on the simple side of the complexity spectrum, such as
English or Spanish.

Thus, the results indicate that XLM-RoBERTa-large is the optimal option to learn
lemmatization without any explicit morphological signal for every language and eval-
uation setting.

7. Discussion

In this article we performed a number of experiments to better understand the role
of morphological information to learn contextual lemmatization. Our findings can be
summarized as follows: (i) fine-grained morphological information does not help to
substantially improve contextual lemmatization, not even for high-inflected languages;
using UPOS tags seems to be enough for comparable performance; (ii) contextual word
representations such as those used in transformer and Flair models seem to encode
enough implicit morphological information to allow us to train good performing lem-
matizers without any explicit morphological signal; (iii) the best-performing lemmatiz-
ers out-of-domain are those using either simple UPOS tags or no morphology at all;
(iv) evaluating lemmatization on word accuracy is not the best strategy—results are too
high and too similar to each other to be able to discriminate between models. By using
word accuracy we are assigning the same importance to cases in which the lemma is
equivalent to the word form (e.g., “the”) as to complex cases in which the word form
includes case, number, and/or gender information (e.g, medikuarenera, which in Basque
means ‘to the doctor’, with its corresponding lemma mediku). We believe that this may
lead to a high overestimation in the evaluation of the lemmatizers.

In this section, we address some remaining open issues with the aim of under-
standing better the main errors and difficulties still facing lemmatization. First, we
discuss the convenience of using an alternative metric to word accuracy. Second, we
analyze the performance of XLM-RoBERTa-base by evaluating accuracy per SES. Third,
we examine the generalization capabilities of XLM-RoBERTa-base by computing word
accuracy for in-vocabulary and out-of-vocabulary words. We also discuss any issues
regarding test data contamination. Finally, we perform some error analysis on the
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out-of-domain performance of the XLM-RoBERTa-base model for Spanish, to see why
it is different from the rest of the languages, as illustrated by Figure 3.

7.1 Sentence Accuracy

Looking at the in-domain results for lemmatization reported in the previous sections
and in the majority of recent work (Malaviya, Wu, and Cotterell 2019; McCarthy et al.
2019; Yildiz and Tantuğ 2019; Straka, Straková, and Hajic 2019), with word accuracy in-
domain scores around 96 or higher, it is not surprising to wonder whether contextual
lemmatization is a solved task. However, if we look at the evaluation method a bit
more closely, things are not as clear as they seem. As has been argued for POS tagging
(Manning 2011), word accuracy as an evaluation measure is easy because you get many
free points for punctuation marks and for the many tokens that are not ambiguous with
respect to its lemma, namely, those cases in which the lemma and the word form are
the same. Following this, a more realistic metric might consist of looking at the rate of
getting the whole sentence correctly lemmatized, just as was proposed for POS tagging
(Manning 2011).

Figure 5 reports the sentence accuracy of the six languages we used in our exper-
iments both for in- and out-of-domain. In contrast to the word accuracies reported in
Figure 3, we can see that the corresponding sentence accuracy results drop significantly.
In addition to demonstrating that lemmatizers have a large margin of improvement,
sentence accuracy allows us to better discriminate between different models. We can see
this phenomenon in the English and Spanish results. Thus, while every model obtained
very similar in-domain word accuracy in Spanish, using sentence accuracy helps to
discriminate between the statistical and the neural lemmatizers. Furthermore, it also
shows that among the neural models XLM-RoBERTa clearly outperforms the rest of the
models by almost 1 percent.

The effect of sentence accuracy for the in-domain evaluation is vastly magnified
when considering out-of-domain performance, with the extremely low scores across
languages providing further evidence of how far lemmatization remains from being
solved.

7.2 Analyzing Word Accuracy per SES

The next natural step in our analysis is identifying which specific cases are most difficult
for lemmatizers. In order to do so, we look at the word accuracy for each of the
SES labels automatically induced from the data. In order to illustrate this point, we
take XLM-RoBERTa-base as an example use case and analyze its predictions for the
languages which could be inspected in-house, namely, Basque, English, Spanish, and
Russian. Thus, Table 9 presents examples and results for the 10 most frequent SES for
each of these 4 languages’ development sets.

As we can see in Table 9, the most common lemma transformation to be learned
is based on the edit script “do nothing”, namely, the lemmatizer needs to learn that
the lemma and the word have the same form. It is also interesting to see how the
ratio of such lemma type changes across languages, from English, where such cases
are observed in almost 77% of the cases, to Basque, where only half of the lemmas
correspond to this rule. However, in terms of word accuracy, the results are remarkably
similar for all 4 languages, in the range of 99%–99.30%. This demonstrates that the
traditional evaluation method greatly overestimates the lemmatizers’ performance.
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Figure 5
Sentence accuracy results for in- and out-of-domain settings.

By looking at other specific cases, we can see that in English problematic examples
to learn are those related to the casing of some characters (e.g., Martin→Martin, NASA
→ NASA). Another noticeable issue refers to the verbs in gerund form (e.g., trying→
try, driving→ drive).

With respect to Spanish, interesting difficult lemmas are observed with articles in
feminine form (e.g., la → el, una → uno), where the masculine form is considered the
canonical form or lemma, and feminine articles and adjectives should be lemmatized
by changing the gender of the word from female to male.

In Russian the most challenging case corresponds to the lemmatization of the nouns
that end with a soft sign with the word accuracy for this SES as low as 93.94%.
The possible reason for such low accuracy could be the absence of a specific grammar
rule that defines the gender of such nouns and, therefore, the termination these nouns
have in different cases. The second lowest accuracy among the 10 most popular SES
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Table 9
10 most frequent SES, brief description, corresponding word accuracy, weight (in %) in the
corpus and examples of words and their lemmas for English, Spanish, Russian, and Basque; SES
are computed following UDPipe’s method (Straka, Straková, and Hajic 2019).

SES Casing Edit script W.acc % Examples

↓0;d | + all low do nothing 99.29 76.87% positive→positive
↑ 0 | ↓1;d | + 1st up do nothing 96.29 6.97% Martin→Martin
↓0;d | -+ all low remove last ch 98.58 5.52% things→thing
↓0;abe all low ignore form, use be 99.81 2.02% is→be

en ↓0;d | –+ all low remove 2 last ch 97.42 1.52% does→do
↓0;d | —+ all low remove 3 last ch 96.45 1.10% trying→try
↑ 0 | ↓ -1;d | + all up do nothing 94.22 0.68% NASA→NASA
↓0;d–+b | + all low first 2 char to b 99.33 0.59% are→be
↓0;d | -+v+e+ all low last ch to ve 100.00 0.51% has→have
↓0;d | —+e+ all low 3 last ch to e 96.23 0.42% driving→drive
↓0;d | + all low do nothing 99.36 72.40% acuerdo→acuerdo
↓0;d | -+ all low del last ch 97.22 5.29% estrellass→estrella
↓0;d+e | -+ all low add e, del last ch 96.73 3.36% la→el
↓0;d | -+o+ all low del last ch, add o 96.21 2.37% una→uno

es ↓0;d+e | –+ all low add e, del 2 last ch 99.78 2.13% los→el
↓0;d | –+ all low del 2 last ch 97.36 1.40% flores→flor
↓0;aél all low ignore form, use él 99.83 1.32% se→él
↓0;d | +r+ all low add r 100.00 0.91% hace→hacer
↓0;d | +o+ all low add o 97.73 0.91% primer→primero
↓0;d |−+a+r+ all low del last ch, add ar 98.07 0.83% desarrolló→desarollar
↓0;d | + all low do nothing 99.16 57.80%
↓0;d |−+ all low del last ch 97.67 6.97%
↓0;d |−+a+ all low del last ch, add a 96.65 3.32%
↓0;d |−+ + all low del last ch, add 96.08 3.10%

ru ↓0;d | –+ all low del 2 last ch 99.03 2.10%
↓0;d |−+e+ all low del last ch, add e 98.04 2.07%
↓0;d |−+ + all low del last ch, add 97.83 1.86%
↓0;d |−+ + + all low del last ch, add 98.88 1.81%
↓0;d |−+ + all low del last ch, add 93.94 1.67%
↓0;d | –+T+ + all low del 2 last, add 98.10 1.60%

↓0;d | + all low do nothing 99.05 49.63% sartu→sartu
↓0;d | –+ all low remove 2 last ch 97.72 9.93% librean→libre
↓0;d |−+ all low remove last ch 96.27 6.54% korrikan→korrika
↓0;d | —+ all low remove 3 last ch 93.24 3.60% aldaketarik→aldaketa

eu ↑ 0 | ↓1;d | + 1st up do nothing 98.54 3.46% MAPEI→Mapei
↓0;d | —-+ all low del 4 last ch 93.00 2.52% lagunaren→lagun
↑ 0 | ↓1;d | –+ 1st up del 2 last ch 95.54 1.88% Egiptora→Egipto
↓0;d-+i+z all low del 1st ch, 100.00 1.38% da→izan
| +n+ add iz,n
↑ 0 | ↓1;d | -+ 1st up del last ch 90.08 1.10% Frantziak→Frantzia

in Russian is for adjectives, cases in which to obtain the lemma one should delete the
last character of the word and add a letter (pronounced as iy kratkoe, short y), that
in Russian determines the suffix for some masculine nouns and adjectives in singular
and nominative case. The words could be in different cases and genders, so it is neces-
sary to know such information for correct lemmatization (e.g., →
[neutral gender, nominative case], → [masculine gender, instru-
mental case]).
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Table 10
Word accuracy for in-vocabulary and out-of-vocabulary words for XLM-RoBERTa-base model
(original setting). Corpora: English - EWT (in-domain), GUM (out-of-domain); Spanish - GSD
(in-domain), AnCora (out-of-domain); Basque - BDT (in-domain), Armiarma (out-of-domain);
Russian - GSD (in-domain), SynTagRus (out-of-domain); Czech - CAC (in-domain), PUD
(out-of-domain); Turkish - IMST (in-domain), PUD (out-of-domain).

In-domain Out-of-domain
In-vocabulary Out-of-vocabulary In-vocabulary Out-of-vocabulary

en 97.25 90.55 92.56 81.11
es 98.06 93.54 82.53 60.07
eu 96.65 82.85 87.92 71.08
ru 98.62 90.23 89.19 77.50
cz 99.21 93.28 98.08 88.66
tr 97.84 84.54 92.34 68.39

Finally, for Basque the most problematic cases with a rather low word accuracy
of only 90.08% can be found among the nouns in ergative (e.g., Frantziak → Frantzia)
or locative cases (e.g., Moskun [in Moscow] → Mosku, Katalunian [in Catalonia] →
Katalunia). The other two most difficult SES occur when the word forms are in posses-
sive case (e.g., lagunaren → lagun) and for nouns in indefinite form (e.g., aldaketarik
[change]→ aldaketa).

It should be noted that an extra obstacle to improving some of these difficult cases is
the low number of samples available. Nonetheless, this analysis shows that lemmatizers
still do not properly learn to lemmatize relatively common word forms.

7.3 Generalization Capabilities of Language Models

In this subsection we aim to analyze the generalization capabilities of a MLM such as
XLM-RoBERTa-base in the lemmatization task. More specifically, we will discuss two
issues: (i) whether MLMs simply memorize the SES lemma classes during fine-tuning
and (ii) whether the good performance of MLMs in this task might be due to some test
data contamination.7

In order to address the first point, we evaluate the performance of XLM-RoBERTa-
base, fine-tuned without morphological features, for those words seen during fine-
tuning (in-vocabulary words) with respect to out-of-vocabulary occurrences.

Tables 10 and 11 report the results for both original and reversed settings and in-
and out-of-domain evaluations. It is noticeable that the model performs very well on
out-of-vocabulary words, also in the out-of-domain evaluation, which would seem to
indicate that XLM-RoBERTa is generalizing beyond the words seen during training.
This seems to be confirmed also by looking at the Spanish and Russian results. It should
be remembered that, while in the reversed setting the training data for Spanish (AnCora,
500K tokens) and Russian (SynTagRus, 900K words) is much larger than in the original
setting (both GSD), the obtained results reflect roughly the same trend.

7 https://hitz-zentroa.github.io/lm-contamination/.
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Table 11
Word accuracy for in-vocabulary and out-of-vocabulary words for XLM-RoBERTa-base model
(reversed setting). Corpora: English - GUM (in-domain), EWT (out-of-domain); Spanish -
AnCora (in-domain), GSD (out-of-domain); Russian - SynTagRus (in-domain), GSD
(out-of-domain); Czech - PUD (in-domain), CAC (out-of-domain); Turkish - PUD (in-domain),
IMST (out-of-domain).

In-domain Out-of-domain
In-vocabulary Out-of-vocabulary In-vocabulary Out-of-vocabulary

en 96.48 88.95 89.84 75.94
es 98.54 93.11 81.71 47.10
ru 98.70 92.28 89.22 59.13
cz 96.26 83.51 90.42 82.35
tr 90.11 70.15 88.63 58.79

Finally, we should consider whether a MLM such as XLM-RoBERTa has already
seen the datasets we are experimenting with during pre-training, namely, whether
XLM-RoBERTa has been contaminated.8 First, it should be noted that CC-100, the corpus
used to generate XLM-RoBERTa, was constructed by processing the CommonCrawl
snapshots from between January and December 2018. Second, the SIGMORPHON data
we are using was released in 20199 with the test data including gold standard lemma
and UniMorph annotations being released in April 2019. Third and most importantly,
XLM-RoBERTa does not see the lemmas themselves during training or inference, but
the SES classes we automatically generate in an ad-hoc manner for the experimentation.
The datasets containing both the words and the SES classes used have not been made
publicly available.

Based on this, it is possible to say that XLM-RoBERTa seems to generalize over
unseen words and that its performance is not justified by any form of language model
contamination.

7.4 Analyzing Spanish Out-of-domain Results

In Section 6.2 we saw that out-of-domain performance of transformer-based models
for Spanish was not following the pattern of the rest of the languages. Instead, they
were 6%–7% worse than the results obtained by the IXA pipes statistical lemmatizers
(ixa-pipe-mm and ixa-pipe-gs). By checking the most common error patterns of XLM-
RoBERTa-base, we found that most of the performance loss was caused by inconsis-
tencies in the manual annotation of lemmas between the data used for in-domain and
out-of-domain evaluation. More specifically, the GSD Spanish corpus included in
UniMorph wrongly annotates lemmas for proper names such as Madrid, London, or
Paris entirely in lowercase, namely, madrid, london, and paris. However, the AnCora
Spanish corpus used for out-of-domain evaluation correctly annotates these cases spec-
ifying their corresponding lemmas with the first character in uppercase. This inconsis-
tency results in 3,781 examples of proper names in the AnCora test set which are all
lemmatized following the pattern seen during training with the GSD training set. Con-

8 https://hitz-zentroa.github.io/lm-contamination/blog/.
9 First GitHub commit December 19, 2018.
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sequently, the word accuracy obtained by the model for these types of examples in the
AnCora test set is 0%. In order to confirm this issue, we corrected the wrongly annotated
proper names in the GSD training data, fine-tuned again the model and saw the out-
of-domain performance of XLM-RoBERTa-base go up from 90.26% to 96.75%, a more
consistent result with respect to the out-of-domain scores for the other 5 languages.

This issue manifests the importance of consistent manual annotation across corpora
from different domains in order to fairly evaluate out-of-domain performance of con-
textual lemmatizers.

8. Concluding Remarks

Lemmatization remains an important natural language processing task, especially for
languages with high-inflected morphology. In this article we provide an in-depth study
on the role of morphological information to learn contextual lemmatizers. By taking
a language sample of varied morphological complexity, we have analyzed whether a
fine-grained morphological signal is indeed beneficial for contextual lemmatization.
Furthermore, and in contrast to previous work, we also evaluate lemmatizers in an
out-of-domain setting, which constitutes, after all, their most common application use.
Our results empirically demonstrate that informing lemmatizers with fine-grained mor-
phological features during training is not that beneficial, not even for agglutinative
languages. In fact, modern contextual word representations seem to implicitly encode
enough morphological information to obtain good contextual lemmatizers without
seeing any explicit morphological signal. Finally, good out-of-domain performance can
be achieved using simple UPOS tags or without any explicit morphological signal.

Therefore, our results suggest that an optimal solution among all the options con-
sidered would be to develop lemmatizers by fine-tuning a large MLM such as XLM-
RoBERTa-large without any explicit morphological signal. Addressing lemmatization
as a token classification task results in highly competitive and robust lemmatizers with
results over or close to the state-of-the-art obtained with more complex methods (Straka,
Straková, and Hajic 2019).

Furthermore, we have discussed current evaluation practices for lemmatization,
showing that using simple word accuracy is not adequate to clearly discriminate be-
tween models, as it provides a deceptive view regarding the performance of lemmatiz-
ers. An additional analysis looking at specific lemma classes (SES) has shown that many
common word forms are still not properly predicted. The conclusion is that lemma-
tization remains a challenging task. Future work is therefore needed to improve out-
of-domain results. Furthermore, it is perhaps a good time to propose an alternative
word-level metric to evaluate lemmatization that, complemented with sentence accu-
racy, may provide a more realistic view of the performance of contextual lemmatizers.
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Appendix A. Detailed Lemmatization Results

Table A1
Overall in-domain lemmatization results for models trained with and without explicit
morphological features; monolingual transformers: Russian - ruBERT, Czech - slavicBERT,
Basque -BERTeus, Turkish - BERTurk, English - RoBERTa, Spanish - BETO.

ixa-mm ixa-gs morph flair mBERT xlm-r mono base UDPipe
en 99.06 98.95 98.10 98.58 98.56 98.76 98.49 97.68 99.01
es 98.89 98.74 99.02 99.02 99.01 99.08 99.04 98.42 99.31
ru 95.07 93.22 96.30 96.18 96.70 97.08 96.55 95.67 97.77
eu 93.41 94.06 96.39 96.09 95.71 95.98 95.51 96.07 97.14
cz 97.86 96.63 98.76 98.87 99.07 99.25 99.01 97.82 99.31
tr 85.52 86.57 96.18 93.98 95.15 95.38 95.20 96.41 96.84

Table A2
Overall out-of-domain lemmatization results for models with and without explicit
morphological features; monolingual transformers: Russian - ruBERT, Czech - slavicBERT,
Basque -BERTeus, Turkish - BERTurk, English - RoBERTa, Spanish - BETO.

ixa-mm ixa-gs morph flair mBERT xlm-r mono
en 95.16 95.13 92.92 93.42 93.50 93.56 93.39
es 97.59 97.45 90.35 90.29 90.27 90.26 90.34
ru 91.00 88.66 87.57 89.90 90.07 90.53 89.71
eu 85.33 86.31 89.03 88.76 87.79 88.15 87.62
cz 92.33 91.81 91.92 95.02 94.72 95.18 94.40
tr 80.33 80.50 84.74 83.51 84.40 84.90 84.46

Table A3
In-domain sentence accuracy results; monolingual transformers: Russian - ruBERT, Czech -
slavicBERT, Basque -BERTeus, Turkish - BERTurk, English - RoBERTa, Spanish - BETO.

ixa-mm ixa-gs morph flair mBERT xlm-r mono
en 88.27 81.90 80.46 85.03 84.00 85.99 82.74
es 75.28 73.16 78.03 78.34 77.59 79.03 78.15
ru 45.73 33.40 55.27 54.47 58.25 61.03 55.67
eu 44.56 50.78 65.44 61.44 60.00 61.44 56.78
cz 69.45 56.17 81.10 83.21 84.99 87.62 83.69
tr 28.90 35.82 69.68 59.75 64.18 64.54 64.36
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Table A4
Out-of-domain sentence accuracy results; monolingual transformers: Russian - ruBERT, Czech -
slavicBERT, Basque -BERTeus, Turkish - BERTurk, English - RoBERTa, Spanish - BETO.

ixa-mm ixa-gs morph flair mBERT xlm-r mono
en 49.55 46.58 35.45 37.73 39.55 42.27 37.73
es 52.38 50.17 21.49 21.83 21.32 21.66 21.83
ru 26.87 21.26 22.69 27.03 27.18 28.26 26.64
eu 13.11 14.54 19.54 19.50 17.29 17.91 17.23
cz 29.00 25.00 36.00 48.00 40.00 47.00 45.00
tr 3.00 7.00 8.00 7.00 9.00 10.00 8.00

Table A5
Overall in-domain lemmatization results (reversed setting) for models with and without explicit
morphological features; monolingual transformers: Russian - ruBERT, Czech - slavicBERT,
Basque -BERTeus, Turkish - BERTurk, English - RoBERTa, Spanish - BETO.

ixa-mm ixa-gs morph mBERT xlm-r mono base UDPipe
en 97.56 97.12 97.78 97.19 97.70 96.90 97.41 98.63
es 98.70 98.53 98.98 99.14 99.19 99.23 98.54 99.46
ru 96.76 96.84 96.93 98.66 98.93 98.67 95.92 98.92
cz 89.59 88.03 93.11 93.01 93.06 93.37 93.58 98.13
tr 77.77 78.33 87.02 83.40 85.07 82.56 86.02 89.03

Table A6
Overall out-of-domain lemmatization results (reversed setting) for models with and without
explicit morphological features; monolingual transformers: Russian - ruBERT, Czech -
slavicBERT, Basque -BERTeus, Turkish - BERTurk, English - RoBERTa, Spanish - BETO.

ixa-mm ixa-gs morph mBERT xlm-r mono
en 91.22 90.55 88.97 90.80 91.21 90.94
es 87.90 87.47 87.50 87.51 87.65 87.33
ru 85.37 86.25 86.10 87.51 88.43 87.64
cz 86.09 83.94 89.13 89.73 90.10 89.17
tr 70.61 70.95 81.03 77.01 78.22 76.87
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Yuval Pinter, Cassandra L. Jacobs, Ryan
Cotterell, Mans Hulden, and David
Yarowsky. 2020. UniMorph 3.0: Universal
Morphology. In Proceedings of the 12th
Language Resources and Evaluation
Conference, pages 3922–3931.

McCarthy, Arya D., Ekaterina Vylomova,
Shijie Wu, Chaitanya Malaviya, Lawrence
Wolf-Sonkin, Garrett Nicolai, Christo
Kirov, Miikka Silfverberg, Sabrina J.
Mielke, Jeffrey Heinz, Ryan Cotterell, and
Mans Hulden. 2019. The SIGMORPHON
2019 shared task: Morphological analysis
in context and cross-lingual transfer for
inflection. In Proceedings of the 16th
Workshop on Computational Research in
Phonetics, Phonology, and Morphology,
pages 229–244. https://doi.org/10
.18653/v1/W19-4226

Müller, Thomas, Ryan Cotterell, Alexander
Fraser, and Hinrich Schütze. 2015. Joint
lemmatization and morphological tagging
with lemming. In Proceedings of the 2015
Conference on Empirical Methods in Natural
Language Processing, pages 2268–2274.
https://doi.org/10.18653/v1
/D15-1272

Nivre, Joakim, Daniel Zeman, Filip Ginter,
and Francis Tyers. 2017. Universal
Dependencies. In Proceedings of the 15th
Conference of the European Chapter of the
Association for Computational Linguistics:
Tutorial Abstracts.

Oflazer, Kemal. 1993. Two-level description
of Turkish morphology. In Sixth Conference
of the European Chapter of the Association for
Computational Linguistics. https://doi
.org/10.3115/976744.976810
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