@article{deemter-2024-pitfalls,
title = "The Pitfalls of Defining Hallucination",
author = "van Deemter, Kees",
journal = "Computational Linguistics",
volume = "50",
number = "2",
month = jun,
year = "2024",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/2024.cl-2.10",
doi = "10.1162/coli_a_00509",
pages = "807--816",
abstract = "Despite impressive advances in Natural Language Generation (NLG) and Large Language Models (LLMs), researchers are still unclear about important aspects of NLG evaluation. To substantiate this claim, I examine current classifications of hallucination and omission in data-text NLG, and I propose a logic-based synthesis of these classfications. I conclude by highlighting some remaining limitations of all current thinking about hallucination and by discussing implications for LLMs.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="deemter-2024-pitfalls">
<titleInfo>
<title>The Pitfalls of Defining Hallucination</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kees</namePart>
<namePart type="family">van Deemter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Despite impressive advances in Natural Language Generation (NLG) and Large Language Models (LLMs), researchers are still unclear about important aspects of NLG evaluation. To substantiate this claim, I examine current classifications of hallucination and omission in data-text NLG, and I propose a logic-based synthesis of these classfications. I conclude by highlighting some remaining limitations of all current thinking about hallucination and by discussing implications for LLMs.</abstract>
<identifier type="citekey">deemter-2024-pitfalls</identifier>
<identifier type="doi">10.1162/coli_a_00509</identifier>
<location>
<url>https://aclanthology.org/2024.cl-2.10</url>
</location>
<part>
<date>2024-06</date>
<detail type="volume"><number>50</number></detail>
<detail type="issue"><number>2</number></detail>
<extent unit="page">
<start>807</start>
<end>816</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T The Pitfalls of Defining Hallucination
%A van Deemter, Kees
%J Computational Linguistics
%D 2024
%8 June
%V 50
%N 2
%I MIT Press
%C Cambridge, MA
%F deemter-2024-pitfalls
%X Despite impressive advances in Natural Language Generation (NLG) and Large Language Models (LLMs), researchers are still unclear about important aspects of NLG evaluation. To substantiate this claim, I examine current classifications of hallucination and omission in data-text NLG, and I propose a logic-based synthesis of these classfications. I conclude by highlighting some remaining limitations of all current thinking about hallucination and by discussing implications for LLMs.
%R 10.1162/coli_a_00509
%U https://aclanthology.org/2024.cl-2.10
%U https://doi.org/10.1162/coli_a_00509
%P 807-816
Markdown (Informal)
[The Pitfalls of Defining Hallucination](https://aclanthology.org/2024.cl-2.10) (van Deemter, CL 2024)
ACL