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Extracting and identifying latent topics in large text corpora have gained increasing importance
in Natural Language Processing (NLP). Most models, whether probabilistic models similar to
Latent Dirichlet Allocation (LDA) or neural topic models, follow the same underlying approach
of topic interpretability and topic extraction. We propose a method that incorporates a deeper
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understanding of both sentence and document themes, and goes beyond simply analyzing word
frequencies in the data. Through simple corpus expansion, our model can detect latent topics that
may include uncommon words or neologisms, as well as words not present in the documents
themselves. Additionally, we propose several new evaluation metrics based on intruder words
and similarity measures in the semantic space. We present correlation coefficients with human
identification of intruder words and achieve near-human level results at the word-intrusion
task. We demonstrate the competitive performance of our method with a large benchmark
study, and achieve superior results compared with state-of-the-art topic modeling and document
clustering models. The code is available at the following link: https://github.com/AnFreTh
/STREAM.

1. Introduction

Identifying latent topics in large text corpora is a central task in Natural Language
Processing (NLP). With the ever-growing availability of textual data in virtually all
languages and about every possible topic, automated topic extraction is gaining increas-
ing importance. Hence, the approaches are manifold. A comprehensive overview over
current approaches is, for example, given in Vayansky and Kumar (2020) and Barde and
Bainwad (2017). For almost all models, a topic is intuitively defined by a set of words
with each word having a probability of occurrence for the given topic. Different topics
can share words, and a document can be linked to more than one topic. Generative
probabilistic models, such as Probabilistic Latent Semantic Analysis (Hofmann 2001)
and Latent Dirichlet Allocation (LDA) (Blei, Ng, and Jordan 2003), are still widely used
and inspired multiple adaptations as several studies (e.g., Agarwal and Chen 2010; Blei,
Griffiths, and Jordan 2010; Chien, Lee, and Tan 2018; Ramage et al. 2009; Rosen-Zvi
et al. 2012) all draw heavily from word co-occurrences. Due to its popularity and general
good performance on benchmark datasets, the interpretation of a topic from LDA is
seldom challenged. Neural topic models (e.g., Dieng, Ruiz, and Blei 2020; Wang, Zhou,
and He 2019; Bianchi, Terragni, and Hovy 2020) further improve upon the existing
methods by integrating word-embeddings or variational autoencoders (Srivastava and
Sutton 2017) into the modeling approach, but still heavily rely on the ideas from Blei,
Ng, and Jordan (2003).

New methods that challenge the typical idea of topic modeling also integrate
word- and document-embeddings (Miles et al. 2022; Angelov 2020; Grootendorst 2022; Sia,
Dalmia, and Mielke 2020; Thielmann, Weisser, and Säfken 2022). However, improve-
ment over the current state of the art is usually measured in terms of performance
as determined by evaluation metrics on standard benchmark datasets. While older
models were still evaluated using likelihood-based perplexity metrics (Lafferty and
Blei 2005; Larochelle and Lauly 2012; Rosen-Zvi et al. 2012), empirical results showed a
negative correlation between perplexity-based metrics and human evaluation of a topic
model (Chang et al. 2009). Additionally, Chang et al. (2009) first introduced the idea
of intruder words. According to this idea, a topic is considered coherent or simply put,
good, if a randomly chosen word, not belonging to that topic, can clearly be identified
by humans. As human evaluation of models is cost and time intensive, researchers used
new evaluation methods that correlated with human evaluation (Lau, Newman, and
Baldwin 2014; Newman et al. 2010). Hoyle et al. (2021) even found no contemporary
model at all that used human feedback as a form of model evaluation. Newer models
were hence evaluated using coherence scores (Angelov 2020; Dieng, Ruiz, and Blei
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2020; Grootendorst 2022; Sia, Dalmia, and Mielke 2020; Srivastava and Sutton 2017).
However, Hoyle et al. (2021) found severe flaws in coherence scores. First, they find
that coherence scores exaggerate differences between models and, second, they validate
the findings from Bhatia, Lau, and Baldwin (2017) and find much lower Pearson corre-
lations between automated coherence scores and human evaluation as compared with
Lau, Newman, and Baldwin (2014). New evaluation methods as proposed by Weisser
et al. (2023), for example, often lack any form of human verification.

We identify two shortcomings in the current state-of-the-art in topic modeling and
document clustering. The first is the significant gap in validated automatic evaluation
methods for topic models. The second stems from the continued reliance on evaluation
methods based on word co-occurrences and outdated definitions of topics from older
models. Current methods rely on limited corpora from which the topic representations
are created. However, integrating larger corpora into the modeling process can enhance
topic quality by including contextually relevant words that were missing from the
original corpus.

1.1 Contributions

The contributions of this paper are hence twofold and can be summarized as follows:

• We propose Context Enhanced Document Clustering (CEDC) which,
with only a few adaptations, integrates linguistic ideas into its modeling.
Soft-clustering on the document level is integrated, such that
P(document|topic) is modeled.

• We introduce new topic modeling performance metrics. The effectiveness
of the proposed metrics is validated by demonstrating impressive
correlations with human judgment.

• We conduct a benchmark study comparing the presented approach to
state-of-the-art topic modeling and document clustering methods. The
presented approach outperforms common benchmark models on both
coherence scores and the presented new metrics for topic evaluation.

• Our findings illustrate that even without any hyperparameter tuning,
CEDC can achieve superior performance compared with existing
state-of-the-art topic models that have undergone extensive
hyperparameter optimization.

The remainder of the paper is structured as follows: First, we give an overview over
related methods. Second, a short introduction into the used linguistic ideas and the
definition of topics is presented. Third, we investigate the design of questionnaires em-
ployed for the evaluation of topic models, providing insights into the essential factors
and considerations inherent in constructing robust questionnaire designs. Fourth, the
method of extracting latent topics from documents, incorporating the aforementioned
definitions, is presented. Fifth, new evaluation metrics are introduced and validated by
presenting correlations with human annotators. Sixth, the proposed model is applied
to two common data sets and compared with state-of-the-art topic models. Finally, a
discussion of the limitations as well as a conclusion is given in Sections 7 and 8.
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2. Related Literature

2.1 Bayesian Generative Topic Models

Topic modeling has been dominated by Bayesian graphical models. Probabilistic Latent
Semantic Analysis (PLSA) (Hofmann 2001) and especially LDA (Blei, Ng, and Jordan
2003) being some of the most notable examples. In the context of these generative
models and related structured probabilistic models (Blei and Lafferty 2007; Mazarura,
De Waal, and de Villiers 2020), a word w is interpreted as a discrete token in the
vocabulary V. The corpus comprises all available documents, where a document d is a
sequence of words mostly represented as a bag-of-words vector. The K topics, denoted
as t1, · · · , tK, are modeled as categorical probability distributions over the vocabulary.
Additionally, the document-specific topic distributions Cat(θθθ(d)), are parameterized by
θθθ(d) ∈ RK for each document d.

Most Bayesian generative models follow the algorithmic structure of LDA with
slight adjustments as given in Algorithm 1, where Cat(·) refers to the categorical distri-
bution and Dir(·) refers to the Dirichlet distribution. α and β are thus the distributional
parameters for the Dirichlet and the categorical distribution, respectively, and must
be specified in advance or optimized according to an optimization criterion. Adapta-
tions of this generative model comprise several techniques: the inclusion of (1) varia-
tional autoencoders (Srivastava and Sutton 2017); (2) contextualized word embeddings
(Das, Zaheer, and Dyer 2015); and (3) contextualized document embeddings (Bianchi,
Terragni, and Hovy 2020). Further adaptations including word, document, or topic
embeddings have also achieved remarkable results, slightly adjusting the overall gen-
erative process (e.g., Dieng, Ruiz, and Blei 2020).

2.2 Clustering-based Topic Models

While the early models like LDA and PLSA suffered from the restrictions imposed by
bag-of-words representations, contextualized embeddings offered further possibilities
beyond the inclusion into generative modeling (Dieng, Ruiz, and Blei 2020; Bianchi,
Terragni, and Hovy 2020). The general idea behind these approaches is to leverage
pre-trained word or document embeddings. These, often-times dimensionality-reduced
representations are subsequently clustered. Each document or word cluster then rep-
resents an individual topic. For example, Sia, Dalmia, and Mielke (2020) demonstrate
the efficacy of this conceptually simple approach by applying various centroid-based

Algorithm 1 Topic Modeling Algorithm
1: Input: Corpus of documents D, hyperparameters ααα, and βββ.
2: Output: Topic assignments and word selections for each document.
3: for each document d in the corpus D do
4: Choose a topic distribution: θθθ(d) ∼ Dir(ααα)
5: for each word index i = 1, . . . , ld in d do
6: Choose a topic: t(d)

i ∼ Cat(θθθ(d))
7: Choose a word: w(d)

i ∼ Cat(βββt(d)
i

)
8: end for
9: end for
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clustering algorithms to word embeddings. Coherent topics are retrieved from the
word clusters.

Angelov (2020) utilizes joint embeddings of words and documents and leverages
HDBSCAN (McInnes, Healy, and Astels 2017) to create clusters of documents from
which topics are extracted. Closely following Angelov (2020), Grootendorst (2022) uses
sentence transformers (Reimers and Gurevych 2019) to obtain document embeddings.
Term-frequency inverse-document frequency (tf-idf) scores (Salton 1989) are used to
obtain scores for the probabilities of words under a given topic. Miles et al. (2022) also
leverage sentence transformers (Reimers and Gurevych 2019) but uses Particle Swarm
Optimization to identify latent clusters in the corpus.

While being algorithmically much simpler than classical topic models, these doc-
ument clustering schemes have proven extremely effective, often outperforming the
computationally more demanding generative models (Sia, Dalmia, and Mielke 2020;
Grootendorst 2022; Angelov 2020; Thielmann, Weisser, and Säfken 2022).

3. On the Nature of Topics

While there have been numerous approaches to extracting latent topics from large text
corpora, little effort has been made in adapting those models to more refined definitions
of a topic. We propose a topic model that follows ideas from linguistic definitions of
topics (Davison 1982, 1984). We present two simple ideas from linguistic theory in order
to construct more humanly interpretable topics:

(i) A word that most accurately expresses the topic of a document may not
necessarily occur in that document.

(ii) Only using nouns and noun phrases is more appropriate for representing
understandable topics.

Idea (i) closely follows (Guijarro 2000): “a topic is, above all, a textual category that is
determined by the context and not by purely formal or structural aspects.” Therefore,
the topic of a document or even a sentence may go beyond the mere occurrence of all
the words in that document. That is, a word that most accurately expresses the topic of
a document may not necessarily occur in that document. We leverage a simple example
from a New York Times headline to demonstrate that:

“Lehman had to die so Global Finance could live”

That sentence pertains to the financial crisis and the collapse of the Lehman Brothers
bank, but neither phrase is explicitly mentioned. A bag-of-words model that only con-
siders words present in the document corpus would not be able to accurately capture
the document’s topic. Contextually relevant words, even if not present in the document,
can provide better representations. Figure 1 shows the described example. Comparing
the cosine distance in a reduced embedding space between the complete embedded
sentence (TEXT) and each embedded word or phrase demonstrates how words and
phrases not occurring in that text can be a meaningful summary of that text. “Banking
crisis” is a more meaningful representation of the sentence than, for example, “global”
and lies closer to the text in the semantic space.
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Figure 1
The word best representing a sentence (or document) does not necessarily need to be included in
that text. The figure represents a New York Times headline from the financial crisis in 2009:
“Lehman had to die so Global Finance could live.” All words present in that text and additional
words are mapped into a high dimensional feature space. The dimensions are reduced to
visually demonstrate, that words not occurring in that sentence, e.g., banking crisis, are better
suited to summarize that sentence than words present in the sentence, e.g., global.

Common topic models (e.g., Blei, Ng, and Jordan 2003; Dieng, Ruiz, and Blei 2020;
Bianchi, Terragni, and Hovy 2020; Das, Zaheer, and Dyer 2015), as well as document
clustering methods (e.g., Grootendorst 2022; Angelov 2020; Sia, Dalmia, and Mielke
2020), face a limitation in that they only consider words that appear in the reference cor-
pus when generating topic representations. This limitation can lead to incorrect topic
interpretations, as shown in the example above. Through expanding the reference cor-
pus and leveraging pre-trained embedding models, we make sure that “the indispen-
sability of frame knowledge for understanding texts” (Beghtol 1986) is accounted for.

Point (ii) closely follows Beghtol (1986), after whom one of the features of general-
ized titles is the absence of verbal forms. Following the idea that a title is the highest
macroproposition of a textual unit (Beghtol 1986), we apply this idea to the construction
of topics and hence propose to only consider nouns and noun phrases for the proposed
method of topic extraction. Martin and Johnson (2015) already demonstrated improve-
ments in topic quality when focusing on nouns, but reduced the complete corpus to
nouns only, losing any semantic or syntactic information hidden in the documents.

3.1 Human Topic Evaluation

The findings from Hoyle et al. (2021) show that current state-of-the-art automated
topic model evaluation does not represent human judgment of topic quality. However,
human topic evaluation is inherently complicated as human evaluation is highly sub-
jective. Moreover, as demonstrated in Section 3 above, topics can be highly complex
and theoretical constructs. Simply relying on human judgment to determine whether
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a topic is good or not does not encompass all of a topic’s properties. The documents
that should be represented by the topic or topic diversity are seldom accounted for
(Newman et al. 2010; Lund et al. 2019; Clark et al. 2021). Clark et al. (2021) even
question human judgment alltogether; however, the used questionnaire design not only
does not provide a midpoint but additionally can strongly induce a bias in preference
due to a highly biasing follow-up question (Clark et al. 2021) (see, e.g., Lehman et al.
1992). Newman et al. (2010), for example, use the straightforward approach of letting
humans rate the created topics quality. Choosing a 3-point scale for model evaluation,
however, can induce unreliability of responses (Krosnick 2018). Simple assessment of
topic quality therefore does not suffice and creating great questionnaires and adequately
operationalizing what researchers are interested in is notably important.

Adapting questions and tasks to the complicated nature of topics can result in
promising questionnaire designs. Lund et al. (2019), for example, introduced a topic-
word matching task, weighting and selecting answers from participants who have a
high confidence and performed well on test questions. Choosing that approach reduces
ambiguity in answers, but also induces a bias towards highly confident participants
and neglects the subtle differences in perceived quality from humans. Promising results
are also achieved with further refined questionnaire designs. Bhatia, Lau, and Baldwin
(2017, 2018) introduce document-level topic model evaluation leveraging the intruder-
topic task, also introduced in Chang et al. (2009). In this task, participants are presented
with a list of words that are related in some way. The task typically involves presenting
a series of word lists, with each list containing a set of related words except for one “in-
truder” word that does not belong to the category or topic (e.g., Apple, Orange, Pineapple,
Bicycle, Banana, Mango). The participants’ objective is to identify and quickly recognize
the intruder word within each list. Thus, the intruder-task, if cleverly designed and
using “intruder” words from different topics, can account for topic diversity and even
could account for a topic adequately representing a set of documents, by sampling
“intruder” words directly from the set of documents.

4. Methodology

Given the seminal works of Grootendorst (2022) and the results shown by Thielmann,
Weisser, and Säfken (2022), we propose a simple yet highly effective document cluster-
ing and topic extraction method. The pseudo algorithm for the complete model can be
seen in Algorithm 2. The proposed method expands a given base-corpus by enriching
extracted document clusters with nouns from an external expansion-corpus and can be
summarized in a simplified manner as follows: First, the given corpus of documents
is embedded using contextualized transformer embeddings. For example Bianchi,
Terragni, and Hovy (2020) showed that contextualized embeddings can improve topic
quality significantly. Second, the dimensionality of the embedded documents is reduced
to alleviate the curse of dimensionality caused by the typically large number of di-
mensions in text embeddings. Third, the embedded documents are clustered using a
Gaussian mixture model (GMM). The central results from this clustering step are the
document clusters in general, which can be interpreted as topics among the documents,
and the centroids of the found clusters more specifically. Please note that we do not
enhance the documents during clustering, thereby ensuring that no erroneous expan-
sion can compromise the quality of the topics. See Section 4.2 for different approaches.
Subsequently, all nouns existing in the base-corpus as well as all nouns in the extension-
corpus are embedded into the same embedding space as previously the documents
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using the same text-embedding model as for the texts in the base corpus. After that, we
select the prototypical words representing each topic as the words with the most similar
embedding to the centroid representing the topic. This allows us to not only obtain
soft document-topic-assignment scores via the similarity of documents to centroids of
topics, but to also obtain scores for the most likely words given a specific topic. Note
that the words representing a topic among documents in the base corpus can also come
from the extension corpus provided they enhance the word-level representation of a
found topic. Last, a cleaning step can be performed to remove overly similar terms from
the topics. Through the simple step of reference corpus expansion and leveraging soft
clustering, we can significantly improve upon previous document clustering and topic
extraction methods (Grootendorst 2022; Angelov 2020).

More formally and extensively, the proposed approach can be described as fol-
lows: Let V = {w1, . . . , wn} be the vocabulary of words and D = {d1, . . . , dM} be
a corpus (i.e., a collection of documents). Each document is a sequence of words
di =

[
wi1, . . . , wini

]
where wij ∈ V and ni denotes the length of document di. Further, let

D = {δδδ1, . . . ,δδδM} be the set of documents represented in the embedding space, such
that δδδi is the vector representation of di and letW = {ωωω1, . . . ,ωωωn} be the vocabulary’s
representation in the same embedding space. Hence, each word wi in the embedding
space represented as ωωωi ∈ RL has the same dimensionality L as a document vector
δδδi ∈ RL. There are different representations of topics, but mostly a topic tk from a set
of topics T = {t1, . . . , tK} is represented as a discrete probability distribution over the
vocabulary (Blei, Ng, and Jordan 2003), such that tk is often expressed as (φk,1, . . . ,φk,n)T

and
∑n

i=1φk,i = 1 for every k, where φk,n ∈ [0, 1]. Thus, φkφkφk = (φk,1, . . . ,φk,n) simply
describes the probability vector over the vocabulary for topic k.1

Based upon the idea expressed in Section 3, we form clusters from the documents
embeddings, D, and subsequently extract topics, tk, that represent these clusters best.
Hence, after transforming the raw documents into document vectors, they are clus-
tered. Due to the curse of dimensionality (Aggarwal, Hinneburg, and Keim 2001) we
reduce the dimensionality of the document embeddings before clustering using UMAP
(McInnes, Healy, and Melville 2018), closely following Angelov (2020) and Grootendorst
(2022). However, we allow each document to belong to more than one cluster resulting
in document topic matrices θθθ and word topic matrices βββ, similar to LDA (Blei, Ng, and
Jordan 2003). The documents are clustered with a GMM (Reynolds 2009), as it not only
allows for soft-clustering, but also has the advantage of optimizing hyperparameters
via, for instance, the Akaike information criterion or the Bayesian information criterion.
As a result, CEDC, in contrast to others (Angelov 2020; Grootendorst 2022; Sia, Dalmia,
and Mielke 2020), offers not only word-topic distributions but also document-topic
distributions.

4.1 Topic Extraction

To find the words that best represent the corpus’ topics, we first extract the centroids
of the k clusters, µµµk ∈ RL, in the original embedding space. Second, we filter the given
vocabulary for nouns and enhance this vocabulary by a specified external vocabulary
of nouns, resulting in a new enriched dictionary V̂ = {w1, . . . , wn, wn+1, . . . , wn+z}.
The word vectorsωωωi closest to µµµk in the embedding space are the words that represent
cluster k’s centroid best (Angelov 2020) and are thus selected as the prototypical words

1 See table A.1 in the Appendix for a complete variable and notation list.
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for the corresponding topic. Note that it could happen that a word represents a topic
ideally for w /∈ V but w ∈ V̂. To select the words best representing a topic, we compute
the cosine similarity between every word in V̂ and all cluster centroids in the embedding
space. For a single word w, its embedding ωωω and a single cluster with centroid µµµ, we
hence compute:

sim(ωωω,µµµ) = ωωω ·µµµ
‖ωωω‖‖µµµ‖ (1)

whereωωω ·µµµ =
∑L

i=1ωiµi and

‖ωωω‖‖µµµ‖ =

√√√√ L∑
i=1

(ωi)2

√√√√ L∑
i=1

(µi)2

L denotes the vectors dimension in the feature space which is identical forωωω and µµµ.
To avoid having words in a topic that are semantically overly similar as, for exam-

ple, economics and economy, each topic can be cleaned. The cosine similarity between the
top Z words contained in a topic can be computed and all words that exceed a certain
threshold, for example, 0.85,2 are removed in descending order of the similarity with
the clusters centroid. An additional advantage of the corpus expansion is the possibility
to model documents in one language, but create topics in a different language, when
using a multi-language embedding model.

Cleaning the topics based on a similarity threshold offers maximum flexibility.
Depending on the task and the preferences, one could thus create topics with maximally
divergent words. In our experiments we find a threshold of 0.85 to be reasonable
and delete all words that have a cosine similarity score greater than or equal to 0.85
compared against other words present in the topic in descending order.

4.2 Corpus Expansion

In the realm of topic modeling, leveraging additional corpora has long been used to
address issues associated with short documents, such as tweets. A straightforward yet
effective solution involves merging similar short documents into longer ones, better
suited for classical algorithms like LDA (Mehrotra et al. 2013). For example, Kant,
Weisser, and Säfken (2020) offer an approach for aggregating tweets based on common
hashtags, a strategy also utilized by Luber et al. (2021). On the other hand, Thielmann
et al. (2021) and Thielmann, Weisser, and Krenz (2021) use expansion corpora before
actual topic modeling to combat severe imbalances in their corpora. Bicalho et al. (2017)
present a framework for extending short documents in topic modeling, although it only
uses words already present in the main vocabulary. A similar conceptual approach is
adopted by Zheng, Liu, and San Wong (2018). These methods, all involving the enrich-
ment of documents, are susceptible to errors, as it is crucial to ensure the correctness of
this enrichment. In cases where document enrichment is flawed, the topic model may
generate topics that bear no relation to the original corpus, failing to uncover its latent
themes and instead presenting erroneous extended topics.

2 The cosine similarity between the words “economy” and “economies,” using the
paraphrase-MiniLM-L6-v2 embedder (Reimers and Gurevych 2019) is, for instance, 0.9.
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Algorithm 2 CEDC
1: Input:
2: - Corpus D = {d1, . . . , dM}
3: - Vocabulary V = {w1, . . . , wn}
4: - Embedding modelM (e.g., All-MiniLM-L12-v2)
5: - Hyperparameters: K
6: Initialization:
7: - Embed documents D→ D = {δδδ1, . . . ,δδδM}
8: - Embed vocabulary V→ V = {ωωω1, . . . ,ωωωn}
9: Dimensionality Reduction:

10: - Use UMAP to reduce the dimensionality of the documents, D ∈ RL → D̃ ∈ Rj,
j < m

11: Document Clustering:
12: - Gaussian Mixture (GMM) on D̃
13: - Identify clusters C1, C2, . . . , CK
14: Cluster centroids:
15: for k = 1 to K do
16: - Calculate cluster centroids µµµk ∈ RL in the original embedding space
17: end for
18: Enhance Vocabulary:
19: - Enhance candidate word vocabulary V̂ = {w1, . . . , wn, wn+1, . . . , wn+z} and

embed enhanced vocabulary V̂ → V̂ = {ωωω1, . . . ,ωωωn,ωωωn+1, . . . ,ωn+z}
20: Topic Extraction:
21: for k = 1 to K do
22: - Calculate distance between µµµk and V̂ in the original embedding space with:

sim(ωωω,µµµ) = ωωω·µµµ
‖ωωω‖‖µµµ‖

23: - Store the similarity scores in vector αk
24: end for
25: for k = 1 to K do
26: - α̂k =

(
αk

max(αk )

)
27: (φk,1, . . . ,φk,n)T = Sort(α̂k, descending)
28: end for
29: Output:
30: - Topics

In contrast, CEDC diverges significantly from the aforementioned methods in its
conceptual approach. Notably, it refrains from expanding the documents themselves at
any stage, guaranteeing the integrity of the topic modeling process. Document expan-
sion occurs only after modeling, when candidate words that best represent a topic are
selected. For a concise overview of the method, please refer to the pseudo-algorithm
provided in Algorithm 2.

5. Evaluation

Given the described approach, we are effectively losing any idea of co-occurence based
coherence for model evaluation. The words best describing a cluster of documents or
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topic do not necessarily have to occur together often in documents. In fact, a word
capturing the topic of a single document optimally does not necessarily have to be
contained in that same document. Additionally, by enhancing the corpus, it might be
possible that neologisms are the words best representing a topic. Imagine, for example,
a set of documents being equally about software and hardware issues. The neologism
software-hardware would be an understandable and reasonable word describing that
topic, but would perform poorly in any word co-occurrence-based evaluation measure.

For evaluation, we hence propose new, non-word co-occurrence-based measures
and use existing measures leveraging word embeddings (Terragni, Fersini, and Messina
2021). We validate the intruder-based metrics by computing correlations with human
annotations. See the Appendix for a comprehensive overview over all introduced and
used metrics.

5.1 Topic Expressivity (EXPRS)

First, we propose a novel measure inherently representing the meaningfulness of a
topic. For that, we leverage stopwords, which, as widely recognized, fulfill a gram-
matical purpose, but transport nothing about the meaning of a document (Salton 1989;
Wilbur and Sirotkin 1992). Hence, we compute the vector embeddings of all stopwords
and calculate a centroid embedding. Subsequently, we compute the cosine similarity
between a topic centroid and the stopword centroid (see Figure 2).

Figure 2
The expressivity of a model is captured by averaging over the topic centroids cosine similarity to
the null space, defined as the centroid of all embedded stopwords. For visualization the vector
dimensions are heavily reduced, but the overall expressivity is still visualized. Due to the
dimensionality reduction, the axes are just labelled “X” and “Y,” respectively. The visualized
topics are created from the 20 Newsgroups data set with the CEDC method and a single topic,
“would,” created with a LDA model. The topic’s top word is annotated at the topic’s position in
the reduced embedding space.
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The weighted topic vector centroid, γγγk, is computed by taking the top Z words
and normalizing their weights, such that

∑Z
i=1φk,i = 1. The complete vector is hence

computed as γγγk =
1
Z
∑Z

i=1φk,iωiωiωi and the overall metric, which we call the model’s
expressivity, where we sum over all K topics, is defined as:

EXPRS(γγγγγγγγγ,ψψψ) = 1
K

K∑
i=1

sim(γγγi,ψψψ) (2)

withψψψ being the centroid vector representation of all stopwords. Note that γγγi 6= µµµi, as µµµi
is the centroid of the document cluster and γγγi is the centroid of topic ti. Note also that
the metrics results can differ depending on the choice of stopwords. However, this also
allows for flexible domain specific adaptations where one would like to automatically
evaluate a topics expressivity dependent on a custom set of stopwords.

5.2 Embedding Coherence (COH)

A measure, generally introduced by Aletras and Stevenson (2013) and reformulated by
Fang et al. (2016) resembling classical coherence scores, is constructed by computing
the similarity between the top Z words in a topic. While Aletras and Stevenson (2013)
compute the word vectors using word co-occurrences, we follow Fang et al. (2016) and
use the created word embeddings. In contrast to classical coherence, we compute the
similarity between every top-Z word in the topic and do not implement a sliding-
window approach. Hence, for Z words, we sum over Z(Z−1)

2 cosine similarities:

COH(tk) =
Z−1∑
i=1

Z∑
j=i+1

sim(ωωωi,ωωωj) (3)

where the overall average coherence of a model is hence computed as:

2
K(Z− 1)Z

K∑
k=1

COH(tk)

Note that Terragni et al. (2021) additionally normalize the word embeddings, COHpw,
before computing the similarity scores for a more stable metric.

5.3 Word Embedding-based Weighted Sum Similarity (WESS)

A metric representing the diversity or the similarity between the topics of a topic model
was introduced by Terragni, Fersini, and Messina (2021) as the word embedding-based
weighted sum similarity and is slightly adjusted for comparing models with a different
number of topics as:

WESS(T) = (K− 1)K
2

K−1∑
i=1

K∑
j=i+1

sim(γγγi,γγγj) (4)
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where γγγi represents the weighted topic centroid for topic i. While this metric certainly
captures the similarity between topics, it does also reflect the diversity of the model.
Hence, if WESS(T) is close to 1, the model would have created topics that are extremely
similar to one another.

Additionally, we propose three different new metrics, leveraging the idea of in-
truder words (Chang et al. 2009) and similarly integrating an idea of topic diversity.
First, a metric that is based upon unweighted topic centroids.

5.4 Intruder Shift (ISH)

Given the top Z words from a topic, we calculate the topic’s unweighted centroid,
denoted as γ̃γγi. Subsequently, we randomly select a word from that topic and replace it
with a randomly selected word, from a randomly selected different topic. The centroid
of the resulting words is again computed, denoted as γ̂γγi. Given a coherent topic and
generally diverse topics, one would expect a larger shift in the topic centroids. Therefore
we calculate the intruder shift of every topic and average over the number of topics:

ISH(T) = 1
K

K∑
i=1

sim(γ̃γγiγ̂γγi) (5)

Hence, one would expect a coherent and diverse topic model to have a lower ISH score
than an incoherent and non-diverse topic model.

5.5 Intruder Accuracy (INT)

The second intruder-word based metric follows the classical approach of identifying an
intruder word more closely. Given Z top words of a topic, we again randomly select
an intruder word from a randomly drawn topic. Subsequently, we calculate the cosine
similarity for every possible pair of words within the set of the top Z words. Then
we calculate the cosine similarity of each top word and the intruder ω̂̂ω̂ω. Finally, our
metric reports the fraction of top words to which the intruder has the least similar word
embedding.

INT(tk) = 1
Z

Z∑
i=1

1(∀j : sim(ωωωi, ω̂̂ω̂ω) < sim(ωωωi,ωωωj)) (6)

Thus we return the number of words from the set where the farthest word from them
in the embedding space is the intruder word, divided by the number of words, Z, taken
into account (see Figure 3 for a visualization).

5.6 Average Intruder Similarity (ISIM)

As a last metric, we propose the average cosine similarity between every word in a topic
and an intruder word:

ISIM(tk) = 1
Z

Z∑
i=1

sim(ωωωi, ω̂̂ω̂ω) (7)
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Figure 3
The intruder word detection in the embedding space. A topic, covering “religion,” and an
intruder word, “medicine,” are plotted with heavily reduced dimensions, using principal
component analysis. The intruder word clearly separates from the otherwise coherent topic,
even in a two-dimensional space. Due to the dimension reduction, the axis are just labelled with
“X” and “Y,” respectively. The topic is again created with the CEDC method on the 20
Newsgroups data set.

To account for any induced randomness in the metrics ISH, INT, and ISIM due to the
random choice of a particular intruder from a particular topic, we propose to calcu-
late those metrics multiple times with differently chosen random intruder words and
subsequently average the results. Hence, the robustness against the specific selection of
intruder words is increased.

5.7 Validation of Metrics

To validate the intruder word based evaluation metrics we take the publicly available
data from Chang et al. (2009). Similar to Lau, Newman, and Baldwin (2014) we com-
pute the metrics over all topics and all models provided in Chang et al. (2009) for
the 20 Newsgroups dataset. However, for clear interpretability, we reduce all words
that include hyphens, due to the representations from Chang et al. (2009). Hence, we
compute the metrics for 7,004 topics in total. We compute the accuracy of the metrics
in terms of the true intruder and the humanly detected intruder for all metrics as
well as the Pearson-r. While the important measures are here the correlation with the
human annotations, reporting the correlations with the true intruder word ensures that
the metrics are not inherently biased towards machine selection. For the accuracy, we
consider a pre-selected or human-selected intruder to be correctly identified, if the score
for this word is the lowest or highest, respectively, among all displayed top words, and
for the correlation we consider the average coherence between a human-selected or an
intruder-word and the other displayed words in a topic compared with those scores for
the rest of the displayed words. The results are shown in Table 1. For all results it must
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Table 1
Metric evaluation: Accuracy and Pearson correlation with the reported true (Intruder) and
humanly selected (Human) intruder word from Chang et al. (2009) for all models and all topics
on the 20 Newsgroups dataset. The three best results for the human correlation and accuracy are
marked in bold. One can see that the metric evaluation for different embedding models
produces impressive results, given the correlation between participants of 0.77. The
paraphrase-MiniLM-L6-v2 performs best, considering INT and ISIM, closely followed by the
GloVe model.3

Accuracy Correlation

Score Intruder Human Intruder Human
Paraphrase-MiniLM-L6-v2

ISH 0.613 0.512 0.526 0.492
INT 0.722 0.622 0.775 0.728
ISIM 0.810 0.686 0.574 0.539

Multi-qa-mpnet-base-dot-v1
ISH 0.675 0.573 0.598 0.567
INT 0.700 0.604 0.751 0.708
ISIM 0.791 0.672 0.543 0.511

All-MiniLM-L12-v2
ISH 0.766 0.652 0.519 0.591
INT 0.677 0.58 0.723 0.687
ISIM 0.766 0.652 0.519 0.490

All-mpnet-base-v2
ISH 0.763 0.652 0.626 0.592
INT 0.661 0.577 0.727 0.689
ISIM 0.763 0.652 0.511 0.482

All-distilroberta-v1
ISH 0.766 0.652 0.625 0.592
INT 0.677 0.587 0.729 0.687
ISIM 0.766 0.652 0.519 0.490

word2vec GoogleNews
ISH 0.413 0.335 0.338 0.302
INT 0.719 0.603 0.774 0.715
ISIM 0.820 0.684 0.554 0.506

Glove Wikipedia
ISH 0.622 0.506 0.496 0.439
INT 0.750 0.634 0.786 0.727
ISIM 0.808 0.677 0.595 0.549

be noted that the human answers have some ambiguity in them. As reported by Lau
et al. (2014), the Pearson-r between the human answers was 0.77.

Hence, the results for INT with a maximum correlation of 0.728 is highly credi-
ble and outperforms the reported correlations (Lau, Newman, and Baldwin 2014) for
coherence evaluation metrics. Interestingly, ISIM performs best when considering the

3 As embedding models we consider the Paraphrase-MiniLM-L6-v2 model (Reimers and Gurevych 2019),
the All-MiniLM-L12-v2 model (Wang et al. 2020), the All-mpnet-base-v2 model (Song et al. 2020), the
Multi-qa-mpnet-base-dot-v1 model (Song et al. 2020), and the All-distilroberta-v1 model (Liu et al. 2019)
as well as a word2vec model pre-trained on the GoogleNews corpus and a GloVe model pre-trained on a
Wikipedia corpus.
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Table 2
Metric evaluation for previously proposed metrics: Accuracy and Pearson correlation with the
reported true (Intruder) and humanly selected (Human) intruder word from Chang et al. (2009)
for all models and all topics on the 20 Newsgroups dataset. Here, we report the results for NPMI
coherence (NPMI), Embedding Coherence (COHpw), Word Embedding-based Centroid
Coherence (WECC), and Contextualized Pointwise-Mutual-Information (CPMI).

Accuracy Correlation

Score Intruder Human Intruder Human

NPMI 0.787 0.655 0.617 0.468
NPMI * 0.381 0.312 0.457 0.277
COHpw 0.305 0.253 0.206 0.109
WECC 0.565 0.454 0.445 0.353
CPMI 0.06 0.058 0.080 0.057

INT 0.722 0.622 0.775 0.728
ISIM 0.810 0.686 0.574 0.539

* Using only 20,000 documents from the reference corpus as for CPMI.

accuracy for the true intruder word, but significantly worse when considering the
human selected word. We find that, independent of the chosen model, the newly intro-
duced metrics strongly outperform the results reported by Lau, Newman, and Baldwin
(2014) at the topic-level with reported Pearson correlations of around r = 0.6.

Additionally, we compare the accuracy and correlation with four other existing
metrics. More specifically, we compute results for normalized pointwise mutual infor-
mation (NPMI) Coherence (Lau, Newman, and Baldwin 2014), as well as embedding
coherence (COHpw) and word embedding-based centroid coherence (WECC) (Terragni
et al. 2021). The results are shown in Table 2. See the Appendix for a comprehensive
overview over all of the mentioned evaluation metrics. As a base corpus for metrics
leveraging additional documents, we use a Wikipedia dump with a size of around
1.6 million documents. We use the provided implementation from the OCTIS package
with default parameters (Terragni et al. 2021). Note that for COHpw and WECC the used
Word2Vec (Le and Mikolov 2014) embeddings are normalized by dividing by the sum
of the vector entries before computing the cosine similarity, which we find significantly
decreases the quality of those metrics as compared to not including this sum-based
normalization. We also include the recently proposed contextualized point-wise mu-
tual information (CPMI) metric proposed by Rahimi et al. (2023), where the classical
word probabilities from NPMI are exchanged with an estimate for the probability of
words in context based on a pre-trained masked language model. We set the segment
length and segment step parameter to 40. Because this metric is highly computationally
demanding, we are only able to use a fraction of Wikipedia comprising around 20,000
documents. One can also note that even with this reduced corpus size, computing the
CPMI scores for the benchmark study takes around 23 hours using an A100 graphics
card when evaluating the word-pair-likelihoods with a BERT model (Devlin et al. 2018)
as proposed by Rahimi et al. (2023). Note that all other metrics are computed in less
than 3 minutes on inferior CPUs.

Interestingly, we find very bad correlations between CPMI and the human evalua-
tion. However, Rahimi et al. (2023) report very low correlations between classical NPMI
and CPMI as well as surprisingly low scores for CPMI for otherwise well performing
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topics.4 Additionally, Rahimi et al. (2023) also find lower correlations between intruder
words detected by a chatbot and CPMI compared with NPMI, which is validated in
our results. This is also confirmed when we use the same reference corpus of 20,000
documents for NPMI that we used for CPMI. While the performance of NPMI with a
smaller reference corpus is drastically reduced, it is still superior to CPMI in terms of
intruder metrics which resonates with Rahimi et al. (2023).

Overall, we find that the introduced metrics INT and ISIM achieve the highest
correlations with human evaluation. We find a comparably lower correlation for NPMI
compared to Lau, Newman, and Baldwin (2014), since they use a different Wikipedia
source corpus for computing the metric but are very similar to the results reported by
Stammbach et al. (2023) and Hoyle et al. (2021). However, even the reported correlation
scores of around 0.6 by Lau, Newman, and Baldwin (2014) are lower than the correla-
tions for INT of 0.73.

5.7.1 Heuristic Analysis. While we compute correlation scores between the presented
metrics and human evaluation, the metric Topic Expressivity is more heuristically moti-
vated. The general idea is to punish models that create garbage topics more severely as
this tends to be an issue when using word- or document clustering techniques (e.g., for
BERTopic [Grootendorst 2022]). In addition to Figure 2, a simple example can motivate
the validity. Consider two topics:

Topic 1:

Spacecraft, Neil Armstrong, Orbit, Spaceship, Satellite, Nasa, Solarwind,
Apollo 11, Rocket, Moon

Topic 2:

is, in, and, with, have, we, are, about, from, has

Computing the NPMI coherence, without adjusting for stopwords or word length and
using the 20 Newgroups corpus as the reference corpus, would lead to the following
NPMI coherence scores: Topic 1 = −0.34908 and Topic 2 = 0.2041. However, Topic
2 does not capture any semantic meaning whereas Topic 1 clearly is about outer
space. The bad NPMI coherence scores for Topic 1 stem from the fact that neither Neil
Armstrong nor Apollo 11 occur in the reference corpus. The topic expressivity, however,
would severely punish Topic 2, with scores of 0.31 and 0.9, respectively (smaller scores
are better). Note, that we adjusted the NPMI coherence measure in our benchmark
study to correctly account for stopwords, by filtering the reference corpus, respectively.
However, more or less meaningless words such as without are not accounted for in, for
example, the nltk stopword list (Bird, Klein, and Loper 2009). Thus, the introduced mea-
sure offers a heuristic solution to penalize topics that uncover little semantic meaning.

6. Results

To evaluate the proposed model, we compare the model results with different bench-
mark models. We also demonstrate the validity of our two hypotheses on corpus
expansion and noun phrases stated in Section 2.

4 Topic: god, christian, people, believe, jesus. Reported score: 0.017.
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As a corpus expanding the reference corpus in CEDC for topic extraction, we use
the Brown corpus taken from nltk (Bird, Klein, and Loper 2009), which we also use
for filtering the vocabulary for noun-phrases. Note that for our applications we do not
account for n-grams, which could further improve the results of CEDC. We compute
the proposed metrics from Section 5 except for the ISH metric due to its inferior perfor-
mance on the intruder word detection task (Table 1). Additionally, we compute NPMI
scores (Lau, Newman, and Baldwin 2014) with the input corpus as the reference corpus
and topic diversity (WESS) and word embedding pairwise coherence scores (COHpw)
using the OCTIS framework (Terragni et al. 2021). All word embedding-based metrics
are computed with the paraphrase-MiniLM-L6-v2 model (Reimers and Gurevych 2019)
due to the results from Table 1, except for WESS and COHpw where we use OCTIS’
default pre-trained word2vec (Le and Mikolov 2014) model. The word2vec model is
trained on the GoogleNews corpus. The number of top words, Z, taken into account for
the metrics EXPRS, COH, WESS, INT, and ISIM is 10. For INT and ISIM, we randomly
select an intruder word from a randomly selected topic 50 times and report the averages.

To confirm our two hypotheses from Section 2 that expanding the reference corpus
and only considering nouns for topic extraction can increase the topic quality, we
perform several analyses. We compare the presented method with and without
reference corpus expansion and with and without noun phrase filtering. The averaged
results over 3 datasets can be seen in Table 3.

6.1 Hypothesis I: Corpus Expansion

Our results confirm our hypothesis that expanding the reference corpus leads to cre-
ating better topics depicted by nearly all metrics. Unsurprisingly, we find that NPMI
coherence scores, only using the reference corpus for computing the coherence, are de-
creased when expanding the reference corpus during topic extraction. Additionally, we
find that using a smaller pre-trained model for computing the metrics, as the leveraged
word2vec (Le and Mikolov 2014) model for COHpwand WESS, also shows a decrease
in performance when expanding the reference corpus. That is presumably due to the
smaller vocabulary size used in these models.

To demonstrate that CEDC actually takes words from the expansion corpus to
create the topics, we analyze how many of the top words are actually taken from the
expansion corpus; see Table 4. Over all 4 datasets, always using the brown corpus as
the expansion corpus, CEDC creates topics with around 50% of words taken from the
expansion corpus.

6.2 Hypothesis II: Noun Phrases

We find that the noun-based models perform worse than the models that consider all
types of words and for the different embedding models used to construct the evaluation
metrics. However, we find that when cleaning the topics the topic quality increases
when using only nouns as compared to using all word types. Additionally we find
that expanding the reference corpus and only considering nouns achieves better perfor-
mance than no expansion and using all word types.

6.3 Benchmarks

As comparison models, we use BERTopic (Grootendorst 2022) and Top2Vec (Angelov
2020) as closely related models and representatives of clustering based topic models;
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Table 3
Comparison of noun-based topic extraction vs. non-noun-based model extraction for the CEDC
model. The reported metrics are averaged over the results for three datasets, the 20 Newsgroups
dataset, the BBC News dataset, and the M10 dataset. All datasets are taken from OCTIS. All
models are fitted using the all-MiniLM-L6-v2 model (Reimers and Gurevych 2019). Given the
results from Table 1, paraphrase-MiniLM-L6-v2 is used for the embedding based evaluation
metrics. We report the baseline metrics for a model not using an expanded corpus and using all
word types and report the differences to that baseline. We find that especially expanding the
reference corpus leads to better topics, represented by nearly all metrics. As expected, the NPMI
coherence scores are considerably worse, when expanding the reference corpus. That is due to
the fact that we used the original corpus the models where fit on as the NPMI coherence
reference corpus. Additionally, we find that only considering nouns for topic words can increase
the evaluation metrics, especially when we clean the topics.

Coherence Measures Diversity Measures Intruder Measures

Model NPMI ↑ COHpw ↑ COH ↑ TOP DIV ↑ WESS ↓ EXPRS ↓ ISIM ↓ INT ↑

CEDC* 0.016 0.430 0.427 0.783 0.377 0.459 0.184 0.719

CEDC+ −0.757 −0.079 +0.07 +0.08 −0.069 −0.061 −0.019 +0.085
CEDC** −0.018 +0.011 −0.014 −0.013 +0.016 +0.007 +0.004 −0.031
CEDC**+ −0.70 −0.073 +0.011 +0.052 −0.046 −0.043 −0.027 +0.050

Cleaned with Similarity Threshold of 0.85

CEDC* 0.014 0.433 0.421 0.775 0.386 0.467 0.189 0.708

CEDC+ −0.752 −0.095 +0.042 +0.077 −0.060 −0.055 −0.026 +0.066
CEDC** −0.016 +0.010 +0.013 +0.003 −0.012 +0.004 ±0 +0.021
CEDC**+ −0.689 −0.081 +0.032 +0.055 −0.048 −0.045 −0.029 +0.045

* Baseline.
** Only nouns.
+ Expanded.

Table 4
Percentage of words from topic top-words taken from the expansion corpus for the CEDC
method.

20NG Reuters M10 BBC Average
All words 73.3% 26.3% 57.5% 72.0% 57.3%
Only Nouns 64.8% 17.7% 50.5% 63.0% 49.0%

LDA (Blei, Ng, and Jordan 2003) as a model not leveraging pre-trained embeddings;
CTM (Bianchi, Terragni, and Hovy 2020) as a generative probabilistic model leveraging
pre-trained embeddings; CTMNeg (Adhya et al. 2023) using CTM as the base model;
a simple K-means model, closely following the architecture from Grootendorst (2022),
but replacing HDBSCAN with a K-means clustering approach; ETM (Dieng, Ruiz, and
Blei 2020) leveraging word2vec (Le and Mikolov 2014); NeuralLDA; and ProdLDA
(Srivastava and Sutton 2017). All models are fit using the OCTIS framework (Terragni
et al. 2021). Where applicable the same pre-trained embedding model as for CEDC,
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Table 5
Average rank table over all datasets and all metrics. We find that simple corpus expansion
outperforms all hyperparameter tuned benchmark models. On average, we find document
clustering methods to perform remarkably well with the best average traditional model being
CTMNeg based on CTM (Bianchi, Terragni, and Hovy 2020; Adhya et al. 2023).

Model Avg. Rank ↓
K-means 6.2
BERTopic† 8.3
Top2Vec† 7.2
TOP2Vec 5.7
LDA 9.0
ProdLDA 8.7
NeuralLDA 10.4
ETM 9.2
CTM 7.4
CTMNeg 4.8

CEDC
+

4.1
CEDC* 5.5
CEDC*+ 4.5

† HDBSCAN results with > 10 topics.
* Only nouns.
+ Expanded topic corpus.

all-MiniLM-L6-v2 (Reimers and Gurevych 2019), is used. Note that we perform exten-
sive hyperparameter tuning for all models except for CEDC. For comparing CEDC with
other models we use 4 standard benchmark datasets, 20 Newsgroups, Reuters (Lewis
1997), BBC News, and M10, as shown in Tables 6 and B.3–B.4. We fix the number of
topics to the true number of topics of 20, 90, 10, and 5, respectively. We compute average
rank scores for all models over all datasets. Table 5 shows the average rank over all
models, all datasets, and all metrics. CEDC performs best and topic expansions clearly
improve topic quality. A complete average rank table over all models and datasets can
be found in the Appendix, Table B.1. For all tested models, we use the same pre-trained
embedding model all-MiniLM-L6-v2 (Reimers and Gurevych 2019), where applicable.
NPMI coherence scores are calculated as presented by Lau, Newman, and Baldwin
(2014). For the best possible comparison, we use the same dimensionality reduction for
CEDC as is used in Toc2Vec (Angelov 2020) and BERTopic (Grootendorst 2022). Hence,
we use UMAP (McInnes, Healy, and Melville 2018) and reduce the dimensions to 5,
explicitly using the same hyperparameters as done in the mentioned models. The same
is done for the simple K-means model.

For LDA, ProdLDA, NeuralLDA, ETM, CTMNeg, and CTM, we optimize over
various hyperparameters with Bayesian optimization as provided by the OCTIS pack-
age (Terragni et al. 2021). We use model perplexity, measured based on the evidence
lower bound of a validation sample of documents, as the objective function in order to
not rely on metrics, such as NPMI coherence or WESS, that measure either cohesion
or separation of topics. LDA is optimized over the parameters of the two symmet-
ric Dirichlet priors on the topic-specific word distribution and the document-specific
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Table 6
Benchmark results on the 20 Newsgroups and Reuters datasets. All models are fit using the
all-MiniLM-L6-v2 pre-trained embedding model (Reimers and Gurevych 2019) where
applicable. paraphrase-MiniLM-L6-v2 is used for the evaluation metrics ISIM, INT, TOP DIV,
and EXPRS. For the metrics available in OCTIS we use the default embeddings which are
pre-trained word2vec embeddings on the Google News corpus. Extensive hyperparameter
tuning is performed for the comparison models (see Appendix). All models, except BERTopic
and Top2Vec, are fit with a pre-specified number of 20 or 90 topics respectively. BERTopic and
Top2Vec detect the optimal number of topics automatically, hence we fit the model as intended by
the authors. However, we additionally fit a K-means model using the class based tf-idf topic
extraction method from BERTopic with 20 and 90 topics, respectively, and hierarchically reduce
the number of topics in Top2Vec.

20 Newsgroups

Coherence Measures Diversity Measures Intruder Measures

Model NPMI ↑ COHpw ↑ COH ↑ TOP DIV ↑ WESS ↓ EXPRS ↓ ISIM ↓ INT ↑
K-means 0.080 0.081 0.289 0.312 0.920 0.466 0.138 0.414
BERTopic† 0.033 0.039 0.244 0.362 0.607 0.499 0.151 0.280
Top2Vec† 0.164 0.080 0.341 0.370 0.288 0.472 0.156 0.513
Top2Vec 0.158 0.100 0.384 0.346 0.825 0.442 0.152 0.654
LDA −0.141 0.031 0.260 0.281 0.875 0.447 0.181 0.275
ProdLDA −0.003 0.064 0.247 0.344 0.835 0.518 0.157 0.243
NeuralLDA −0.187 0.011 0.210 0.590 0.820 0.685 0.193 0.131
ETM −0.514 0.038 0.274 0.634 0.265 0.695 0.259 0.197
CTM −0.069 0.027 0.251 0.360 0.725 0.533 0.167 0.301
CTMNeg 0.051 0.473 0.264 0.895 0.328 0.497 0.151 0.313

CEDC
+ −0.893 0.364 0.523 0.925 0.234 0.368 0.130 0.886

CEDC* 0.156 0.443 0.414 0.775 0.352 0.460 0.171 0.742
CEDC*+ −0.807 0.342 0.460 0.885 0.256 0.380 0.126 0.832

Reuters

Coherence Measures Diversity Measures Intruder Measures

Model NPMI ↑ COHpw ↑ COH ↑ TOP DIV ↑ WESS ↓ EXPRS ↓ ISIM ↓ INT ↑
K-means −0.139 0.042 0.209 0.441 0.578 0.531 0.151 0.179
BERTopic† −0.158 0.039 0.202 0.475 0.584 0.556 0.152 0.167
Top2Vec† −0.240 0.067 0.340 0.504 0.159 0.407 0.206 0.304
Top2Vec −0.168 0.075 0.367 0.505 0.271 0.388 0.216 0.376
LDA −0.822 0.025 0.387 0.533 0.394 0.660 0.364 0.172
ProdLDA −0.650 0.005 0.256 0.441 0.299 0.573 0.203 0.197
NeuralLDA −0.446 0.013 0.209 0.645 0.920 0.733 0.196 0.129
ETM −0.920 0.008 0.486 0.676 0.096 0.671 0.467 0.190
CTM −0.602 0.012 0.285 0.441 0.362 0.617 0.237 0.209
CTMNeg −0.521 0.402 0.234 0.580 0.412 0.571 0.189 0.172

CEDC
+ −0.581 0.167 0.489 0.539 0.316 0.320 0.172 0.695

CEDC* −0.252 0.198 0.421 0.458 0.365 0.344 0.176 0.610
CEDC*+ −0.252 0.179 0.431 0.483 0.356 0.339 0.172 0.643

† HDBSCAN results with > 20 or 90 topics, respectively.
* Only nouns.
+ Expanded topic corpus.

topic distribution. For ProdLDA, NeuralLDA, CTMNeg, and CTM, the learning rate
parameter, as well as the number of layers and the number of neurons per layer in
the inference network, are considered. Finally, for ETM, we tune the learning rate, the
number of hidden units in the encoder, and the embedding size.
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Since BERTopic and Top2Vec are highly insensitive to different hyperparameter set-
tings of the underlying HDBSCAN algorithm and also do not provide a way to measure
the (marginal) likelihood of data, we choose the default hyperparameters for those
models. While finding the optimal hyperparameters for these models might improve
their performances compared to the models where we implemented hyperparameter
tuning, the same is true for CEDC.

For CEDC we do not implement any form of hyperparameter tuning. Hence, the
GMM is fit using scikit-learns default parameters. The convergence threshold for the
Expectation Maximization (EM) algorithm is 0.0001; each component has its own gen-
eral covariance matrix and 1e-6 is added to the covariance diagonals for regularization
purposes. The maximum number of iterations in the EM algorithm is set to 100 and
K-means is used to initialize the weights. Hence, the results achieved by CEDC could
be further optimized, for example, by optimizing GMM with respect to the Bayesian-
or Akaike Information Criterion. Additionally, the pre-trained embedding could be
fine-tuned, which is true for all models leveraging pre-trained embeddings and could
additionally improve the models’ performance (Thielmann, Weisser, and Säfken 2022;
Bianchi, Terragni, and Hovy 2020).

As expected, the models closely related to CEDC also perform well. However,
while Top2Vec, BERTopic, and the used K-means model are closely related to the
proposed CEDC, CEDC achieves much better results concerning all metrics. Notably,
CTM demonstrates exceptional performance on smaller datasets (please refer to the Ap-
pendix material). Since CTM leverages pre-trained document embeddings, the perfor-
mance improvement compared to, for example, ETM when regarding small corpora is
to be expected. CTMNeg exhibits remarkable proficiency in terms of topic diversity due
to its utilization of negative sampling, inherently yielding dissimilar topics. Given that
we exclusively utilize the source corpus for the computation of NPMI coherence, it is un-
surprising that CEDC exhibits considerably diminished performance when considering
the expansion corpus. This occurs because the topics generated include words that are
absent in the evaluation corpus. Thus, CEDC* without corpus expansion outperforms
CEDC+ in terms of NPMI coherence. Notably, CEDC* performs quite similarly across
almost all metrics in comparison to Top2Vec and K-means, as they share conceptual
similarities. Additionally, CEDC+ consistently demonstrates strong performance for all
metrics for all datasets, consistently achieving an average rank within the top four for all
metrics except NPMI. CEDC+ performs best in 5 of 8 metrics and achieves an average
rank of 3.0 when not considering NPMI coherence. Furthermore, our findings do not
support the notion that models employing a hard clustering approach significantly
underperform on a multi-label dataset like Reuters, when compared to models incor-
porating soft clustering techniques (as observed in CTM/ETM vs. Top2Vec/BERTopic
results).

This is also confirmed when taking a closer look at the extracted topic words (see
Tables C.1–C.2). While CTMNeg also creates coherent topics, it also inflates topics with
words that are ambiguous or rather unrelated to the overal theme, such as demonstrated
in topic 15: [make, church, people, time, work, president, day, thing, give, job]. The same
is true for ProdLDA or K-means. This becomes especially evident when looking at the
20 Newsgroups dataset and the encryption topic.

CEDC: [secure, encryption, security, encrypt, privacy]
CTMNeg: [key, chip, government, encryption, clipper]

ProdLDA: [algorithm, escrow, government, encryption, agency]
K-means: [key, encryption, chip, clipper, escrow]
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Table 7
Two selected topics (Sports and Space) for the best performing topic models accross all metrics as
well as for a bad performing model.

Topic Words

CEDC game , league, player , play , baseball , sport , pitch, hockey, team, bat

CEDC orbit , satellite, solar, planet , shuttle, mission, earth , rocket, moon, plane

CTMNeg lose, playoff, hockey, fan, baseball , watch, play , shot, devil , ranger

CTMNeg image, space , format, mission, satellite, datum, send , orbit , include , shuttle

K-means game , team, player , play , season, win, score, year, hit, goal

K-means space , launch , orbit , satellite, mission, earth , solar, moon, shuttle, planet

Top2Vec baseball , league, hockey, playoff, pitch, sport , game , ball, team, bat

Top2Vec space , moon, solar, orbit , opportunity, government, proposal , mission, planet , technology

ProdLDA game , team, win, player , muslim , play, playoff, genocide , turkish , pen

ProdLDA mission, orbit , flight, station, launch , fuel, moon, solar, surface , year

From the top-5 words it is relatively hard to conclude that the CTMNeg topic is about
encryption. Whereas the other words, such as key and chip, certainly are related to
encryption they are so only in the context knowledge of what this topic is about. Table 7
shows two selected topics from several models fit on the 20 Newsgroups dataset. The
coloring scheme is performed based on cosine similarity in the embedding space. We
find that ProdLDA, the worst performing model in terms of automated evaluation met-
rics, also quite obviously mixes up topics—for example, sports and mideastern politics.
On the other hand, especially CEDC and K-means create topics where each word clearly
belongs to the overall detected themes.

7. Conclusion

We develop a novel model for topic extraction beyond the mere occurrence of words
in the reference corpus. We are able to show that expanding the reference corpus
improves model performance. Additionally, we can confirm that restricting the word
types for topic extraction by only considering nouns can also lead to improved topic
quality, under certain conditions. CEDC outperforms commonly used state-of-the-art
topic models on multiple benchmark datasets, even in cases where the comparison
models underwent extensive hyperparameter tuning while no hyperparameter tuning
was performed for CEDC.

Given that almost all newly introduced topic models are evaluated automatically
(Hoyle et al. 2021), automatic evaluation metrics are of utmost importance. Hoyle et al.
(2021) even postulated that automatic topic model evaluation is broken, as the current
used metrics have overall low correlations with human judgment of topic quality.
Hoyle et al. (2022) even go a step further and argue that neural topic modeling alto-
gether is broken. However, in their comprehensive analysis they fail to address human
evaluation or intruder word-based topic evaluation. Looking at Tables C.1–C.3 we
cannot conclude that neural topic models perform worse than non-neural models and
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find that neural topic models can achieve great results also for automated evaluation
metrics that strongly align with human judgment. Instead, we find that, for instance,
LDA while also creating concise topics creates topics that lack any specific meaning,
such as: [time, thing, lot, good, bad, make, feel, pretty, real, experience]. We present
multiple novel evaluation metrics closely following state-of-the-art human evaluation
of topic model quality and achieve great correlations with human evaluation. We greatly
improve upon the correlation with human evaluation compared to the currently most
often used metric, NPMI, achieving correlations of around r = 0.73 compared to NPMI
correlations of r = 0.63. The proposed approach of using word embeddings and cosine
similarity achieves impressive results given the overall lower agreement between hu-
man responses (Pearson-r = 0.77).

Additionally, we introduce a novel evaluation metric, based upon the centroid clus-
ter of stopwords in the embedding space. Given the approach of enhancing the reference
corpus, the described model might be especially useful when evaluating short texts
or identifying sparsely represented topics in a corpus (Thielmann, Weisser, and Krenz
2021; Thielmann et al. 2021). Through the inherent sparsity of the data, the words best
describing a topic might not be included in the reference corpus and an enhancement
could thus greatly improve the creation of topics.

8. Limitations

Automated evaluation of topic model quality is inherently difficult. That difficulty is
considerably increased by the fact there is no gold standard or even a ground truth
for the quality of a topic. Chang et al. (2009) introduced the reasonable approach of
evaluating the coherence of a set of words with intruder-words. However, one cannot
expect 100% agreement between people when it comes to judging whether a word is an
intruder word in a topic. The proposed evaluation metrics achieve impressive results
with human annotations; they cannot, however, reflect human ambiguity or extreme
subtlety in perceived topic quality. Additionally, as all evaluation metrics based upon
human evaluation and hence experimental results achieved with human participants,
the metrics might reflect a selection bias (WEIRD) (Henrich, Heine, and Norenzayan
2010). Further embedding models could be evaluated and tested and larger human
evaluation studies could be conducted.

Recent findings about the dominance of certain dimensions in transformer em-
beddings (Timkey and van Schijndel 2021) suggest an inherent bias in transformer
embeddings that could negatively affect similarity measures in the semantic space.
Our results do not suggest that such a bias negatively influences the modeling results;
however, this study does not look into the dimensionality effects, which could be the
topic of further research.

Moreover, the creation of transformer models solely for the purpose of topic ex-
traction that emphasize, for example, the beginnings of phrases due to their increased
importance to the underlying topics of a subsubsection (Kieras 1980, 1981) could greatly
improve upon the existing methods.

Appendix A. Supplemental Methodology

To make reading easier, we provide a full notation list. All used variables and their
notation can be found here.
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Table A.1
Variable list.

V Vocabulary
D Corpus
M Number of documents in the corpus
di Document i
wi Word i in V
ωωωi Word i represented in the embedding space
δδδi Document i represented in the embedding space
δ̂δδi di represented in the reduced embedding space
tk Topic k
T Set of topics
φk,i Probability of word i in topic k
γγγk Topic centroid vector of topic k
µµµk Mean of document cluster k
θθθ Document cluster/topic matrix
βββ Word cluster/topic matrix
ψ Null Space/centroid of all stopwords

All modeling steps from the proposed method are presented here in extensive
form. First, the target corpus should be embedded. This can be done, either using
contextualized transformer embeddings, as, for example, Bianchi, Terragni, and Hovy
(2020) showed that contextualized embeddings can improve topic quality. However,
approaches as used by Sia et al. (2020) where every word is embedded singularly
and the documents are represented as centroid vectors of all occurring words are also
possible. Second, the dimensions of the embedded documents, δiδiδi, are reduced due to
the curse of dimensionality. Afterwards, the reduced embeddings, δ̂δδi, are clustered,
for example, using GMM such that soft clustering is possible. The centroids for each
document cluster,µµµk, are computed. Next, the corpus is filtered for nouns and all nouns
present in the corpus supplemented by all nouns present in an expansion corpus are
embedded. Note that here the same embedding procedure must be chosen as for the
documents (see, e.g., Angelov 2020; Grootendorst 2022). Then, the similarity between
all candidate words and all document cluster centroids is computed. Based on the can-
didate embeddings and the similarity to the document clusters µµµk, the topic centroids
γγγk are computed and similar to LDA, we get a document topic matrix, θθθ, and a word
topic matrix, βββ. Last, a cleaning step can be performed to remove overly similar words
from the topics.

Appendix B. Additional Benchmark Results

In addition to the 20 Newsgroups and Reuters dataset, we fit all models on the M10
and BBC News datasets. Both datasets are taken from OCTIS (Terragni et al. 2021).
CEDC again outperforms most other models on nearly all metrics. Interestingly, CTM
achieves good results for the BBC News dataset, which is comparably small with<2,000
documents. For the M10 dataset, which is composed of scientific papers and hence
a more difficult dataset, we find that topic expansion strongly improves the model
performance.
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Table B.1
Benchmark results on the BBCNews dataset. All models are fit using the all-MiniLM-L6-v2
pre-trained embedding model (Reimers and Gurevych 2019) where applicable.
paraphrase-MiniLM-L6-v2 is used for the evaluation metrics ISIM, INT, TOP DIV, and EXPRS.
For the metrics available in OCTIS we use the default embeddings which are pre-trained
word2vec embeddings on the Google News corpus. Extensive hyperparameter tuning is
performed for the comparison models (See Appendix). All models, except BERTopic and
Top2Vec, are fit with a pre-specified number of 5 topics. BERTopic and Top2Vec detect the
optimal number of topics automatically, hence we fit the model as intended by the authors.
However, we additionally fit a K-means model using the class based tf-idf topic extraction
method from BERTopic with 5 topics and hierarchically reduce the number of topics in Top2Vec.

Coherence Measures Diversity Measures Intruder Measures

Model NPMI COHpw COH TOP DIV WESS EXPRS ISIM INT
K-means 4.8 6.8 7.6 7.6 8.2 7.0 1.5 5.8
BERTopic† 5.5 9.0 11.4 9.5 8.5 9.5 3.4 10.0
Top2Vec† 5.8 6.5 5.8 10.0 7.2 6.5 10.0 5.5
Top2Vec 4.8 5.0 4.5 7.5 7.2 4.0 8.2 4.2
LDA 6.5 11.2 8.8 7.8 8.5 6.8 11.1 11.1
ProdLDA 7.0 9.6 10.8 7.5 8.5 10.5 6.8 9.2
NeuralLDA 9.2 11.0 12.6 5.4 11.8 12.8 8.0 12.8
ETM 7.8 11.2 6.0 7.5 7.0 10.5 13.0 10.8
CTM 8.0 10.6 9.4 6.6 4.2 5.8 7.0 7.5
CTMNeg 4.8 1.0 7.8 2.1 4.8 6.8 3.9 7.6

CEDC
+

11.8 3.8 1.0 4.5 3.2 2.0 5.4 1.0
CEDC* 5.1 2.0 3.2 8.2 7.2 6.0 8.6 3.2
CEDC*+ 10.1 3.2 2.2 6.8 4.5 3.0 4.1 2.2

† HDBSCAN results with > 10 topics.
* Only nouns.
+ Expanded topic corpus.

Table B.2
Average rank table over all datasets when not considering NPMI.

Model Avg. Rank ↓
K-means 6.4
BERTopic† 8.8
Top2Vec† 7.4
TOP2Vec 5.8
LDA 9.3
ProdLDA 9.0
NeuralLDA 10.6
ETM 9.4
CTM 7.3
CTMNeg 4.8
CEDC

+
3.0

CEDC* 5.5
CEDC*+ 3.7

† HDBSCAN results with > 10 topics.
* Only nouns.
+ Expanded topic corpus.
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Table B.3
Benchmark results on the M10 dataset. All models are fit using the all-MiniLM-L6-v2 pre-trained
embedding model (Reimers and Gurevych 2019) where applicable. paraphrase-MiniLM-L6-v2 is
used for the evaluation metrics ISIM, INT, TOP DIV, and EXPRS. For the metrics available in
OCTIS we use the default embeddings that are pre-trained word2vec embeddings on the Google
News corpus. Extensive hyperparameter tuning is performed for the comparison models. All
models, except BERTopic and Top2Vec, are fit with a pre-specified number of 10 topics. BERTopic
and Top2Vec detect the optimal number of topics automatically, hence we fit the model as
intended by the authors. However, we additionally fit a K-means model using the class-based
tf-idf topic extraction method from BERTopic with 10 topics and hierarchically reduce the
number of topics in Top2Vec.

Coherence Measures Diversity Measures Intruder Measures

Model NPMI ↑ COHpw ↑ COH ↑ TOP DIV ↑ WESS ↓ EXPRS ↓ ISIM ↓ INT ↑
K-means −0.108 0.063 0.254 0.940 0.354 0.458 0.149 0.320
BERTopic† −0.318 0.056 0.231 0.628 0.424 0.514 0.165 0.219
Top2Vec† −0.345 0.083 0.315 0.060 0.547 0.478 0.220 0.326
Top2Vec −0.270 0.100 0.335 0.780 0.496 0.454 0.198 0.484
LDA −0.176 0.035 0.244 0.830 0.330 0.440 0.208 0.177
ProdLDA −0.251 0.074 0.222 0.970 0.425 0.508 0.170 0.220
NeuralLDA −0.571 0.030 0.186 0.373 0.582 0.581 0.185 0.118
ETM −0.204 0.044 0.255 0.330 0.591 0.500 0.268 0.151
CTM −0.322 0.060 0.239 0.950 0.247 0.353 0.172 0.271
CTMNeg −0.152 0.447 0.256 1.0 0.261 0.378 0.157 0.311

CEDC
+ −0.8411 0.338 0.512 0.855 0.322 0.383 0.179 0.827

CEDC* −0.5762 0.441 0.419 0.770 0.394 0.420 0.193 0.719
CEDC*+ −0.8033 0.358 0.451 0.825 0.339 0.395 0.166 0.818

† HDBSCAN results with > 10 topics.
* Only nouns.
+ Expanded topic corpus.

Since we only consider the training corpora for the NPMI metric, CEDC has an
inherent disadvantage in this metric. When we compare overall average rankings over
all metrics except for NPMI, the advantage of CEDC over the benchmark models
becomes even more apparent, which is demonstrated by the average performance
rankings omitting NPMI scores shown in Table B.2.

Figure B.1
Four created topics with CEDC from the 20 Newsgroups dataset.
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Table B.4
Benchmark results on the BBC News dataset. All models are fit using the all-MiniLM-L6-v2
pre-trained embedding model (Reimers and Gurevych 2019) where applicable.
paraphrase-MiniLM-L6-v2 is used for the evaluation metrics ISIM, INT, TOP DIV, and EXPRS.
For the metrics available in OCTIS we use the default embeddings which are pre-trained
word2vec embeddings on the Google News corpus. Extensive hyperparameter tuning is
performed for the comparison models. All models, except BERTopic and Top2Vec, are fit with a
pre-specified number of 10 topics. BERTopic and Top2Vec detect the optimal number of topics
automatically, hence we fit the model as intended by the authors. However, we additionally fit a
K-means model using the class based tf-idf topic extraction method from BERTopic with 5 topics
and hierarchically reduce the number of topics in Top2Vec.

Coherence Measures Diversity Measures Intruder Measures

Model NPMI ↑ COHpw ↑ COH ↑ TOP DIV ↑ WESS ↓ EXPRS ↓ ISIM ↓ INT ↑
K-means −0.868 0.088 0.333 1.000 0.297 0.490 0.139 0.667
BERTopic† −0.307 0.053 0.232 0.623 0.423 0.513 0.166 0.218
Top2Vec† −0.339 0.082 0.314 0.059 0.542 0.477 0.218 0.329
Top2Vec −0.324 0.097 0.334 0.920 0.419 0.435 0.173 0.528
LDA −0.150 0.029 0.208 0.840 0.447 0.480 0.202 0.098
ProdLDA −0.290 0.050 0.212 0.960 0.484 0.541 0.171 0.199
NeuralLDA −0.460 0.077 0.190 1.000 0.574 0.558 0.170 0.136
ETM −0.184 0.043 0.249 0.600 0.510 0.489 0.252 0.182
CTM −0.299 0.050 0.232 1.000 0.236 0.369 0.148 0.241
CTMNeg −0.194 0.454 0.263 1.000 0.278 0.499 0.150 0.344

CEDC
+ −0.851 0.351 0.456 0.810 0.368 0.444 0.186 0.701

CEDC* 0.055 0.440 0.402 0.765 0.433 0.518 0.202 0.602
CEDC*+ −0.772 0.373 0.403 0.795 0.397 0.474 0.181 0.656

† HDBSCAN results with > 5 topics.
* Only nouns.
+ Expanded topic corpus.
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Appendix C. Experimental Setup

For all tested models, we use the same pre-trained embedding model all-MiniLM-L6-v2
(Reimers and Gurevych 2019), where applicable. NPMI coherence scores are calculated
as presented by Lau, Newman, and Baldwin (2014). For the best possible comparison,
we use the same dimensionality reduction for CEDC as is used in Doc2Vec (Angelov
2020) and BERTopic (Grootendorst 2022). Hence, we use UMAP (McInnes, Healy, and
Melville 2018) and reduce the dimensions to 5, explicitly using the same hyperparame-
ters as done in the mentioned models. The same is done for the simple K-means model.

Table C.1
The CEDC model and CTMNeg fit on the 20 Newsgroups dataset. The topic extraction corpus
for CEDC is expanded with the brown corpus taken from the nltk package (Bird, Klein, and
Loper 2009).

Topic Words
CEDC

1 game, league, player, play, baseball, sport, pitch, hockey, team, bat
2 application, program, software, workstation, code, window, file, programming, print, tool
3 bullet, firearm, weapon, attack, shoot, kill, action, armed, protect, protection
4 homosexual, homosexuality, sexual, insist, reject, accept, morality, contrary, disagree, oppose
5 machine, chip, circuit, electronic, hardware, equipment, device, computer, workstation, processor
6 vehicle, auto, engine, rear, tire, driver, truck, motor, wheel, bike
7 israeli, conflict, oppose, attack, peace, struggle, arab, turkish, armenian, kill
8 action, consideration, complain, oppose, bother, rule, issue, policy, insist, accept
9 complain, respond, response, consideration, suggestion, idea, bother, challenge, influence, accept
10 orbit, satellite, solar, planet, shuttle, mission, earth, rocket, moon, plane
11 mailing, mail, send, email, contact, message, telephone, address, customer, request
12 printer, print, font, format, digital, make, manufacture, manufacturer, machine, workstation
13 sell, sale, purchase, offer, brand, customer, supply, vendor, deal, price
14 send, inform, publish, message, newsgroup, reader, mailing, post, topic, mail
15 lose, result, score, loss, beat, challenge, division, note, gain, fall
16 belief, faith, doctrine, accept, truth, religion, notion, religious, trust, interpretation
17 hardware, computer, device, drive, machine, monitor, electronic, chip, shareware, modem
18 patient, complain, care, affect, effect, issue, treat, suffer, response, treatment
19 interpretation, truth, assert, argue, claim, consideration, logic, insist, complain, belief
20 secure, encryption, security, encrypt, privacy, protect, protection, scheme, enforcement, access

CTMNeg
1 key, chip, government, encryption, clipper, security, algorithm, secure, encrypt, law
2 state, gun, law, weapon, crime, fire, society, batf, government, kill
3 car, buy, ride, engine, bike, speed, problem, turn, back, brake
4 image, space, format, mission, satellite, datum, send, orbit, include, shuttle
5 human, belief, life, religion, faith, exist, evidence, word, science, claim
6 study, year, health, patient, medical, drug, disease, effect, doctor, treatment
7 game, play, year, point, team, score, season, player, good, hit
8 sell, price, sale, condition, shipping, buy, offer, pay, interested, manual
9 window, run, version, server, support, problem, display, software, set, client
10 people, kill, armenian, woman, time, child, live, day, man, fire
11 entry, error, output, program, line, problem, set, window, write, remark
12 drive, scsi, card, speed, controller, problem, disk, ide, board, fast
13 screen, advance, mouse, draw, print, convert, character, driver, monitor, video
14 armenian, turkish, genocide, muslim, population, greek, jewish, history, state, political
15 make, church, people, time, work, president, day, thing, give, job
16 interested, address, reply, newsgroup, fax, student, mailing, mail, contact, news
17 light, water, energy, temperature, orbit, turn, air, battery, large, side
18 thought, understand, portion, practice, speak, express, opinion, spread, aren, frequently
19 lose, playoff, hockey, fan, baseball, watch, play, shot, devil, ranger
20 portion, longer, frequently, due, introduction, primarily, consist, poor, improve, variety
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Table C.2
ProdLDA and K-means fit on the 20 Newsgroups dataset.

Topic Words
ProdLDA

1 image, system, format, file, software, processing, graphic, quality, package, analysis
2 unique, permission, importance, complaint, portion, weekend, previously, extreme, storage, gather
3 paper, topic, helpful, article, advance, reader, permission, author, progress, reply
4 connect, card, port, pin, connector, controller, monitor, scsi, bus, driver
5 algorithm, escrow, government, encryption, agency, chip, clipper, key, scheme, secret
6 good, year, time, game, ride, bike, hit, run, bag, blue
7 window, screen, problem, run, font, menu, default, driver, display, error
8 unique, importance, remark, unknown, combine, portion, closely, extreme, behavior, precisely
9 game, team, win, player, muslim, play, playoff, genocide, turkish, pen
10 people, work, time, fire, make, kill, armenian, soldier, building, tear
11 mission, orbit, flight, station, launch, fuel, moon, solar, surface, year
12 motif, server, widget, system, mail, faq, mailing, client, programming, distribution
13 people, sin, man, church, love, make, pray, verse, give, life
14 unique, chain, shipping, storage, importance, condition, imagine, enable, portion, sale
15 advance, monitor, connect, mouse, board, multi, parallel, video, modem, download
16 unique, permission, thought, importance, possibly, combine, duty, violation, complaint, mess
17 cop, batf, knock, dog, joke, justify, funny, compound, armed, bat
18 make, atheism, point, belief, good, evidence, question, atheist, science, existence
19 car, problem, buy, drive, dealer, engine, bike, brake, tire, gear
20 people, disease, drug, health, medical, firearm, gun, patient, treatment, state

K-means
1 modem, printer, mouse, print, port, serial, driver, fax, laser, problem
2 window, font, file, motif, application, run, display, program, server, color
3 religion, belief, atheist, faith, church, christian, atheism, exist, religious, sin
4 homosexual, homosexuality, man, moral, gay, sex, love, sin, church, word
5 car, bike, ride, engine, mile, oil, dog, tire, brake, road
6 patient, disease, doctor, medical, health, drug, treatment, food, study, pain
7 gun, government, firearm, weapon, law, people, crime, president, state, police
8 battery, sound, power, circuit, voltage, radio, audio, input, heat, output
9 game, team, player, play, season, win, score, year, hit, goal
10 key, encryption, chip, clipper, escrow, phone, government, algorithm, agency, security
11 image, file, program, format, version, user, software, entry, graphic, server
12 price, sale, sell, shipping, offer, condition, copy, cover, manual, include
13 drive, scsi, disk, controller, ide, hard, floppy, bus, boot, bio
14 science, evidence, theory, post, scientific, fact, point, claim, argument, context
15 batf, gas, compound, warrant, claim, court, evidence, start, law, tax
16 space, launch, orbit, satellite, mission, earth, solar, moon, shuttle, planet
17 post, money, delete, net, article, newsgroup, year, school, information, news
18 mail, address, send, list, request, email, post, software, message, phone
19 card, monitor, video, driver, memory, board, mhz, bit, vga, mode
20 armenian, turkish, israeli, jewish, kill, village, arab, genocide, russian, soldier
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Table C.3
LDA fit on the 20 Newsgroups dataset.

Topic Words
LDA

1 problem, line, sound, power, work, current, ground, control, correct, radio
2 information, list, space, mail, system, send, address, launch, computer, datum
3 make, talk, work, job, money, question, president, spend, general, press
4 year, world, jewish, history, event, source, live, greek, ago, city
5 key, chip, bit, number, message, encryption, clipper, block, algorithm, system
6 game, win, play, team, year, player, good, season, hit, lose
7 force, war, israeli, plan, area, attack, military, policy, accord, peace
8 word, true, religion, man, life, church, love, make, belief, sin
9 post, read, question, good, find, book, write, answer, article, reply
10 drive, card, system, driver, disk, work, run, memory, scsi, video
11 buy, price, sell, good, offer, cost, pay, sale, interested, include
12 small, water, large, effect, high, make, gas, theory, side, air
13 people, kill, armenian, child, woman, man, die, turkish, dead, burn
14 file, window, image, program, version, application, color, display, run, server
15 car, phone, company, engine, technology, product, front, market, mile, big
16 time, thing, lot, good, bad, make, feel, pretty, real, experience
17 care, drug, year, study, increase, doctor, number, patient, disease, medical
18 gun, law, weapon, police, crime, criminal, person, fire, firearm, bill
19 start, back, leave, turn, happen, stop, bike, time, guy, call
20 people, government, state, group, case, individual, society, idea, free, personal

Appendix D. Summary of Existing and Proposed Metrics

• NPMI Coherence (NPMI):

– NPMI Coherence measures the average normalized
pointwise mutual information between words in a topic.
The word (co)occurrence probabilities are estimated based
on document chunks of a reference corpus.

– Established metric for traditional topic models.

– No embeddings are required.

– Needs a potentially large reference corpus.

– Results depend on hyperparameters for estimating the
word (co)occurrence probabilities.

– Can yield inconsistent or biased results, especially for
Neural Topic Models.

• Embedding Coherence (COH):

– Embedding Coherence measures the average cosine
similarity of word pairs within a topic.

– Simple, easily explainable metric.
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– Requires word embeddings.

– Choice of word embeddings is a hyperparameter.

• Word Embedding-based Centroid Coherence (WECC):

– WECC computes the average cosine similarity of words to
the centroid of the words of their topic.

– Can take advantage of word embeddings.

– Lower computational complexity than COH.

– Requires word embeddings.

– Choice of word embeddings is a hyperparameter.

• Contextualized Pointwise Mutual Information (CPMI):

– The CPMI metric works similarly to the NPMI metric. Here
the similarity of two words is assessed based on likelihood
ratios by a BERT model.

– Utilizes the powerful BERT model.

– Potentially very high computational cost.

– High computational cost can lead to poor performance of
this metric since the reference corpus has to be restricted.

• Topic Expressivity (EXPRS):

– Topic Expressivity is computed as the cosine similarity
between the centroid of the embeddings of the stopwords
and the centroid of the topic.

– Novel metric for measuring the expressivity of a topic.

– Requires word embeddings.

– Choice of word embeddings is a hyperparameter.

– Results depend on the choice of stopwords.

• Word Embedding-based Weighted Sum Similarity (WESS):

– The diversity metric WESS measures the average cosine
similarity between the centroids of a given collection of
topics.
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– Simple metric for assessing the diversity of a clustering.

– Requires word embeddings.

– Choice of word embeddings is a hyperparameter.

• Intruder Shift (ISH):

– Intruder shift assesses how much a topic’s centroid changes
when the embedding of an unrelated intruder word is
added.

– Intruder-based metric.

– Intuitive explanation.

– Requires word embeddings.

– Choice of word embeddings is a hyperparameter.

– Depends on the choice of intruder (averaging over many
choices alleviates this issue).

• Intruder Accuracy (INT):

– For a given topic and a given intruder word, Intruder
Accuracy is the fraction of topwords to which the intruder
has the least similar embedding among all topwords.

– Intruder-based metric.

– High correlation with human assessments.

– Requires word embeddings.

– Choice of word embeddings is a hyperparameter.

– Depends on the choice of intruder (averaging over many
choices alleviates this issue).

• Average Intruder Similarity (ISIM):

– ISIM measures the average cosine similarity of topwords of
a topic to an intruder word.

– Intruder-based metric.

– Intuitive explanation.

– High correlation with human assessments.
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– Requires word embeddings.

– Choice of word embeddings is a hyperparameter.

– Depends on the choice of intruder (averaging over many
choices alleviates this issue).
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