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The sparsity of labeled data is an obstacle to the development of Relation Extraction (RE)
models and the completion of databases in various biomedical areas. While being of high interest
in drug-discovery, the literature on natural products, reporting the identification of potential
bioactive compounds from organisms, is a concrete example of such an overlooked topic. To
mark the start of this new task, we created the first curated evaluation dataset and extracted
literature items from the LOTUS database to build training sets. To this end, we developed a new
sampler, inspired by diversity metrics in ecology, named Greedy Maximum Entropy sampler
(https://github.com/idiap/gme-sampler). The strategic optimization of both balance and
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diversity of the selected items in the evaluation set is important given the resource-intensive
nature of manual curation. After quantifying the noise in the training set, in the form of
discrepancies between the text of input abstracts and the expected output labels, we explored
different strategies accordingly. Framing the task as an end-to-end Relation Extraction, we
evaluated the performance of standard fine-tuning (BioGPT, GPT-2, and Seq2rel) and few-shot
learning with open Large Language Models (LLMs) (LLaMA 7B-65B). In addition to their
evaluation in few-shot settings, we explore the potential of open LLMs as synthetic data gen-
erators and propose a new workflow for this purpose. All evaluated models exhibited substantial
improvements when fine-tuned on synthetic abstracts rather than the original noisy data. We
provide our best performing (F1-score = 59.0) BioGPT-Large model for end-to-end RE of natural
products relationships along with all the training and evaluation datasets. See more details at
https://github.com/idiap/abroad-re.

1. Introduction

The biomedical literature constitutes a vast but still underexploited reservoir of knowl-
edge, the growth of which reflects the expansion of topics and areas of applications.
However, the diversity and morphological richness of bio-entities and the complexity
of the relationships expressed between them contrast with the sparsity of the available
labeled data. While some domains can already benefit from efficient extraction models
(e.g., chemical–disease relationships) for database completion, less popular domains,
like the literature on natural products (NP), are often overlooked. NPs are chemical
compounds produced by living organisms (plants, bacteria, fungi, etc.) exhibiting a
wide range of structure and functions and offering a vast reservoir of potential ther-
apeutic molecules. The isolation and identification of NP is primarily reported in the
scientific literature and also disseminated in different public databases (e.g., COCONUT
Sorokina et al. 2021; KNApSAcK Shinbo et al. 2006). Recently, the LOTUS initiative
(Rutz et al. 2022) has successfully established an Open and FAIR standard resource for
natural products chemistry through a rigorous harmonization of a heterogenous set
of databases. However, the extent of the NP landscape is not reflected by the content
of the databases, which are incomplete and exhibit an imbalanced coverage toward
model organisms (e.g., A. Thaliana). While a significant portion of the existing literature
remains unannotated, there is also a continuous surge of new publications reporting
novel relationships that could contribute to filling this gap.

Enriching such knowledge bases requires jointly performing Named Entity Recog-
nition (NER) and Relation Extraction (RE). In this case, NER is defined as a sub-task
that consists of identifying the boundaries and classifying the type of named entities
(i.e., an organism “Isaria sinclairii” and a chemical “fingolimod”1). The subsequent RE
step is the semantic classification of the relations between two (or more) entities. To
complete NP databases, the objective is to extract the “produces” or “is isolated from”
relationships between organisms and chemicals. Note that other types of relation-
ships can also be expressed, such as “inhibits the growth of ”. Traditional deep learning
models exhibiting SOTA performance on NER and RE (separately or in so-called end-
to-end models) rely on a large set of labeled data (Luo et al. 2022b; Giorgi, Bader,
and Wang 2022; Wang et al. 2020). However, while datasets like Linneaus (Gerner,
Nenadic, and Bergman 2010) have been successfully applied for organism recognition,

1 https://lotus.naturalproducts.net/compound/lotus_id/LTS0203935.
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existing chemical NER datasets, that is, CHEMDNER (Krallinger et al. 2015), do
not provide sufficient coverage on the NP literature and do not adequately capture
their morphological specificities. Along with the typically long systematic names of
metabolites (e.g., 3’-[gamma-hydroxymethyl-(E)-gamma-methylallyl]-2,4,2’,4’ -

tetrahydroxychalcone 11’-O-coumarate2), many chemical mentions are defined as
multiple co-joined enumerations, where entities are mentioned in non-continuous
strings such as “cystodiones A-D” or “wortmannins C and D”, and are particularly
frequent. These chemical mentions must be correctly identified and expanded to recover
the full list of entities, which also adds complexity to the decoding process. Finally, to the
best of our knowledge, no datasets are available for the subsequent RE step (Luo et al.
2022a). The aforementioned constraints are frequently encountered in BioNLP, when
venturing beyond the well-studied chemical–disease associations or protein–protein
interactions.

Meanwhile, the abundance of unlabeled textual data has been instrumental in
driving recent breakthroughs in representation learning (Wysocki et al. 2023) and the
development of the foundational models (e.g., GPT and LLaMA model families). The
zero/few-shot learning capabilities of Large Language Models (LLMs) (Kojima et al.
2023; Brown et al. 2020) make them serious candidates for performing a task with only
a handful of examples. Moreover, conversation (chatbots) and instruction-tuned models
(Zhang et al. 2023) also represent a promising opportunity for synthetic data generation
to alleviate the main problem, namely, the lack of labeled data within the target dis-
tribution. Indeed, beyond the sophistication of model architectures, data availability
and quality are limiting factors for the extraction performance, but often neglected
(Sambasivan et al. 2021).

In order to address these scarcity constraints, we propose an end-to-end generative
extraction paradigm, which introduces two novel methodological contributions. Firstly,
we introduce a diversity-optimized sampling strategy, which minimizes the selection
of items for the parsimonious creation of evaluation gold-standards and training sets.
This component minimizes the popularity biases and associated imbalance towards
entities which are over-expressed in the literature (e.g., model organisms and recurring
substances), allowing for a systematic (entropy-based) method to maximize diversity
and measure the utility of new annotations. Secondly, we use the generative expressivity
of models fine-tuned on conversations and instructions for creating within-distribution
synthetic data, to support the construction of end-to-end joint NER-RE extraction
models. In this framework, the diversity-sampled entities and associated relations are
linguistically embedded within synthetically generated text. The overall framework is
depicted in Figure 1.

More formally, this article aims to investigate the following research hypotheses
(RHs) as supporting mechanisms for addressing these limitations, using NP as a vali-
dation domain:

• RH1: Diversity-optimized sampling provides a valuable selection of
items to build training and evaluation datasets for RE.

• RH2: In a practical scenario with noisy labels, LLMs can be more
beneficial as a synthetic data generator than unsupervised predictors.

2 https://pubmed.ncbi.nlm.nih.gov/11678652.
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Figure 1
Combining diversity sampling and synthetic data generation. Upper part: With unbalanced
data, annotated relationships are frequently associated with the same head or tail entities. The
proposed sampling method is used to build training and evaluation datasets by maximizing the
diversity of entities in the extracted samples. The larger the set of entities and the more they are
uniformly distributed across the relations, the higher the diversity. Bottom part: When labeled
data are scarce or noisy, LLMs prove more advantageous in the reverse task, as synthetic data
generators, rather than as few-shot learners. Subsequent models trained on synthetic data
outperform few-shot learning and models trained on raw noisy data.

1.1 Related Work

Biomedical RE (Shahab 2017; Zhao et al. 2020, 2023) encompasses various subtypes,
depending on the considered bio-entities, such as drug–drug interactions (Zhang, Leng,
and Liu 2020), chemical–disease relationships (Li et al. 2016), gene–disease associations
(Su et al. 2021), and protein–protein interactions (Ahmed et al. 2019), among the most
popular. Investigating the overlooked NP relationships necessitated the exploration
of several interconnected sub-tasks, including the selection and partitioning of a
dataset, the generation of synthetic data, and the assessment of various end-to-end RE
strategies. This section provides a review of the closely related works that align with
these three development axes.

1.1.1 Splitting Datasets and Impact of Diversity. Data selection and partitioning methods
can significantly impact the generalization performance of supervised models. Xu and
Goodacre (2018) evaluated various splitting techniques, including K-S (Kennard and
Stone 1969) and SPXY (Galvao et al. 2005), and emphasized the importance of main-
taining a balance between training and test sets for a reliable evaluation of models. Like
the recently proposed SPlit (Joseph and Vakayil 2022) method, these approaches aim to
select a representative subset of the data, leveraging different distance metrics. Unlike
the Euclidean or energy-based distances used in aforementioned methods, the Greedy
Maximum Entropy (GME)-sampler uses an entropy-based metric to capture diversity
and select representative evaluation and training sets. Although these distance-based
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methods share a common objective, they were initially designed to work with contin-
uous variables, rather than categorical variables, such as large sets of organisms and
chemicals. Moreover, to the best of our knowledge, no method has been specifically
developed to sample documents reporting N-ary relations for the purpose of building
NER/RE datasets. The GME-sampler represents a first attempt to address this gap.
Regarding diversity, Yu, Khadivi, and Xu (2022) investigated various diversity-based
metrics for selecting training data, and demonstrated their positive impact on the per-
formance of NER models. Additionally, other works have highlighted the significance
of effective data selection over a naive increase of the dataset size for training (Axelrod,
He, and Gao 2011; Fan et al. 2017; Feng et al. 2018).

1.1.2 Synthetic Data Generation. Training neural RE models strongly rely on a substantial
and diverse set of training data. However, annotating large datasets with experts is time-
consuming and costly. To overcome this limitation, many studies explored approaches
such as Data Augmentation (DA) (Hu et al. 2023; Feng et al. 2021; Pellicer, Ferreira, and
Costa 2023) and Distant Supervision (DS) (Smirnova and Cudré-Mauroux 2018; Mintz
et al. 2009), which enable the expansion of the dataset size by creating new training
examples from existing ones, or, by assigning pseudo-labels to external, unlabeled data.
In the biomedical domain, the RE challenge ChemProt (Yoon et al. 2023; Iinuma, Miwa,
and Sasaki 2022) or protein–protein interactions extraction (Su et al. 2019), have recently
benefited from the application of these methods. Synthetic data generation (SDG) goes
beyond DA or DS by creating fully synthetic datasets, namely, paired input text and
output labels. A significant body of influential works has leveraged the generative
capabilities of LLMs to propose different SDG strategies in zero-shot (Ye et al. 2022; Gao
et al. 2023; Schick and Schütze 2021; He et al. 2022; Wang et al. 2021; Smith et al. 2024;
Meng et al. 2022; Kumar, Choudhary, and Cho 2020), few-shot (Bonifacio et al. 2022;
Dai et al. 2023; Meng et al. 2023; Chen et al. 2022a; Yoo et al. 2021), or by fine-tuning
(Anaby-Tavor et al. 2020; Papanikolaou and Pierleoni 2020; Hartvigsen et al. 2022). Sim-
ilarly to this work, Josifoski et al. (2023) also proposed to reverse the task and used LLMs
from OpenAI to generate plausible input text based on expected output triplets from
Wikidata. Tang et al. (2023) compared the performance of an LLM (ChatGPT) in directly
extracting information from unstructured clinical text to its potential use as synthetic
data generator for DA. Veselovsky et al. (2023) evaluated various prompting strategies
to improve diversity and alignment between synthetic and real-world data distributions
for sarcasm detection. Yang et al. (2020) combined synthetic data generation with a
diversity-augmentation component for common sense reasoning. Aggarwal, Jin, and
Ahmad (2023) applied SDG to biomedical NER, while Xu et al. (2023) used a two-
stage training procedure on synthetic and golden data, notably for extracting protein
interactions with the ChemProt dataset. In contrast, this work proposes to leverage
Open LLMs to generate synthetic abstracts based on a list of verbalized main findings.
The diversity of the generations is increased and guided by the entropy-based sampling
of the seed articles which originally report these findings, as well as a set of crafted
patterns of expressions.

1.1.3 End-to-End Relation Extraction. Kambar, Esmaeilzadeh, and Heidari (2022) classifies
various strategies and highlights the potential of end-to-end (or joint) NER and RE
methods to overcome limitations of the traditional pipeline approaches. In the biomed-
ical domain, Li et al. (2017) proposed a Bi-LSTM for drug adverse effects extraction,
while Esmail Zadeh Nojoo Kambar, Esmaeilzadeh, and Taghva (2022) introduced a
graph neural network for chemical–protein interactions. Recent approaches frame the
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task in a generative “text-to-text” process, using sequence-to-sequence models, by lin-
eralizing the expected relations as a text string to be decoded from the input. Seq2Rel
(Giorgi, Bader, and Wang 2022) and REBEL (Huguet Cabot and Navigli 2021) proposed
different linearization schemas, and Zhang et al. (2020) and Zeng et al. (2019) notably
assessed the biases caused by the forced order of relationships during training. Hou
et al. (2022) trained a sequence-to-sequence model for drug–target interactions extrac-
tion, and Zeng et al. (2018) introduced a copy mechanism. Additionally, Eberts and
Ulges (2021) used four task-specific sub-components, and Paolini et al. (2021) utilized a
translation mechanism. Finally, BioGPT (Luo et al. 2022b) demonstrated SOTA perfor-
mance on several biomedical datasets using an autoregressive approach, providing the
input text as context.

With the aim of providing an end-to-end RE model to help expanding NP databases,
we started by building a training and evaluation dataset. Inspired by the metrics used
in ecology, we first proposed the Greedy-Maximum-Entropy sampler (GME-sampler)
to extract a diversity-optimized sample from the LOTUS database. By manually an-
notating the top-diverse items, we proposed the first evaluation dataset for this task,
which can serve as a benchmark for future developments in this area. Following a
descriptive analysis of the remaining data and quantifying the noise present in the
form of discrepancies between raw input text and annotated (standardized) labels,
we evaluated various modeling approaches. First, we compared the performance of
standard fine-tuning techniques on the available noisy data to the few-shot learning ca-
pabilities of open LLMs. Leveraging the generative capabilities of a LLM (Vicuna-13B),
we then proposed a novel synthetic abstract generation pipeline and demonstrated the
significant performance improvements (on average 24.7% in F1-score) brought by these
new training data on the evaluated models. In line with these results, we have made
available our best-performing BioGPT-Large model (F1-score = 59.0) and the ≈ 25,000
synthetic abstracts on which it has been trained. A synthetic diagram of the different
strategies explored in this work is presented in Figure 2. The main contributions of the
work can be summarized as:

• A diversity-optimized sampler (GME-sampler) for building diverse and
balanced datasets for RE (see https://github.com/idiap/gme-sampler).

• The first curated evaluation dataset for RE between organisms and NP
(see https://zenodo.org/records/8422007).

• An evaluation of different strategies for RE with noisy labels.

• A framework for synthetic data generation via chatbot or
instruction-tuned models and the produced training datasets
(see https://github.com/idiap/abroad-re and
https://zenodo.org/records/8422294).

• A set of ready-to-use BioGPT fine-tuned models (see
https://huggingface.co/mdelmas/BioGPT-Large-Natural-Products

-RE-Diversity-synt-v1.0)

2. Proposed Approach

This section describes the different methodology used in this work. We start by describ-
ing our first contribution, the GME-sampler, in Section 2.1. The few-shot learning and
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Figure 2
A global diagram of the workflow presented in this work.

fine-tuning strategies evaluated for the RE task are then described in Sections 2.2.1 and
2.2.2. The synthetic abstract generation procedure is described in 2.3. Finally, details
on the evaluation, experimental setup and implementation details are provided in
Appendix A.

2.1 Greedy Maximum Entropy Sampling (GME)

The objective is to extract a sample S of documents from an initial set D with an
optimized diversity of mentioned organisms and chemicals: S ⊂ D, |S| = l and |D| = L.
The initial set D corresponds to the LOTUS dataset, in which each document d reports a
set of relations between organism(s) and isolated natural product(s): d = {r1, r2, . . . , rnd

},
where nd is the number of reported relations in d. A relation rk = (oi, cj) involves the
organism oi and the chemical cj. The set of organisms and chemicals are denoted as O
and C, respectively.

Then, given a set S of documents, the probability that a reported relation involves
the organism oi (and similarly for the chemical cj) is

P(oi) =

∑
d∈S

|{rk : oi ∈ rk}d|∑
d∈S

nd

,
with |{rk : oi ∈ rk}d|
the number of relations involving
oi in d

(1)

It follows that the diversity of organisms or chemicals can be measured with the
Shannon’s entropy over the probability distributions of elements of O and C in the sam-
ple S. Expressed with entropy, the diversity reflects the uncertainty about the organism,
or the chemical, which is attached to a relation reported in an article (Leinster 2021; Jost
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2006). For organisms (respectively, chemicals) the Shannon’s entropy in the sample S is
HS(O) = −

∑
oi∈O

P(oi) log P(oi). Adding a new document d to S will update the probabil-

ity distributions of O (respectively, C), and the new observed entropy will be HS+d
(O)

where S+d = S ∪ {d}. Therefore, to optimize the diversity over organisms and chem-
icals, the document d∗ added to S minimizes the distance to the utopian point
(log|O|, log|C|) (maximal observable entropy over organisms and chemicals):

d∗ = arg min
d
||(HS+d

(O), HS+d
(C))− (log|O|, log|C|)|| (2)

The proposed sampling approach is a simple greedy algorithm that, at each step, selects
and adds the new document d∗ from D, maximizing the diversity on organisms and
chemicals (see Equation 2). We refer to it as diversity-sampling. From an ecological
perspective, a community’s diversity can be regarded as low if a randomly chosen
individual is more likely to be part of a common (dominant) species, and high if it is
more probable to be part of a rare species (Hill 1973; Leinster 2021). Accordingly, the
greater the number of species and the more uniformly distributed they are, the higher
the diversity of the community. Shannon’s entropy, which quantifies this uncertainty on
the species, is used in ecology as a metric of diversity. In the context of an unbalanced
dataset where annotated relationships are frequently associated with model organisms
and recurring chemicals, this entropy-based criterion seems relevant to measure and
select the documents that maximize the diversity during the sampling.

The method can also be seen as a ranking procedure, and a sample is determined
by selecting the first top n ranked items. The selection of an appropriate sample size l
is also a critical, but often overlooked factor. By monitoring HS(O) and HS(C) during
the iterative construction of S (until l = L), it is possible to determine the step l at which
diversity starts to deteriorate and sampling should be stopped, that is, when the new
added documents provide relationships for already frequently reported entities in S.
The GME-sampler, initially designed for the purpose of extracting data from LOTUS,
has also been implemented as a standalone library. It is proposed as a method to build
samples of documents reporting N-ary relations with optimized diversity, and can be
applied in alternative contexts (e.g., Pharmacogenomics: Variant–Drug–Adverse event).
See code available at https://github.com/idiap/gme-sampler.

2.2 Different Strategies for Relation Extraction
2.2.1 Few-shot In-context Learning with Open LLM. In few-shot settings, the model is
prompted with K input–completion example pairs and one final input, with the ob-
jective of accurately generating the completion for the final input (Brown et al. 2020).
Considering the limited size of the context-window (2,048 tokens), we carefully selected
K = 5 archetypical parts of diverse abstracts that exemplify various patterns and speci-
ficities of reporting NP relationships. More details in Appendix A.1.

2.2.2 Fine-tuning. The task was framed as a special case of end-to-end Relation Extraction
with a single relation. Several factors influenced this design: The need for a generalized
NER component that is not dictionary-based, as new species and NP are discovered
and named continuously, the scarcity of training data to segment the task in a NER-RE
pipeline, and, the specific decoding requirements related to the NP relationships with
multiple co-joined entities (e.g., gloeophyllins A-C). Given an input text X reporting
relations {r1, r2, r3} between organisms o1 and NP c1:3 like: “Three new metabolites,
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gloeophyllins A-C (1-3) have been isolated from the solid cultures of Gloeophyllum abiet-
inum.”, the expected output is the linearized list of relations Y: “Gloeophyllum abietinum
produces gloeophyllin A; Gloeophyllum abietinum produces gloeophyllin B; Gloeophyllum
abietinum produces gloeophyllin C”, following recommendations from previous studies
(Luo et al. 2022b; Giorgi, Bader, and Wang 2022). During fine-tuning, the objective
function is then defined as:

L(θ) =

|Y|∑
t=1

log p(yt|X, y<t,θ) (3)

For efficient fine-tuning with minimal memory and parameter requirements, we
adopted the QLoRA approach (Dettmers et al. 2023). The method extends the Low-
rank Adaptation (LoRA) technique (Hu et al. 2022), which involves freezing the original
model weights and training only a small set of parameters, known as adapters. Given
the original weight of a layer W, with h = Wx, the adapters operate as an update to the
initial weights W + ∆W and give h = Wx + ∆Wx. With QLoRA, the LoRA strategy is
integrated with quantization to minimize the memory footprint. It uses a low-precision
storage data type (NF4) and a computation data type (BFloat16) for the forward and
backward passes. Two models were evaluated using this strategy: BioGPT (Luo et al.
2022b) and GPT-2 medium (Radford et al. 2019). Both models share the same architecture,
but BioGPT and its tokenizer were trained on PubMed items and achieved SOTA perfor-
mance on three end-to-end RE tasks. As Luo et al. (2022b), we also add Seq2rel (Giorgi,
Bader, and Wang 2022) as a second baseline using a sequence-to-sequence approach.
More details on the choice of the models, experimental setup, hyperparameter tuning,
and evaluation are presented in Appendices A.2–A.5.

2.3 Synthetic Abstract Generation

A general overview of the synthetic abstract generation is provided in Figure 3. The
goal is to leverage the generative capabilities of instruction- and conversation-tuned
models to correct the discrepancies between the expected output labels and the input
text. Consistency is maintained by grounding the generated abstracts on key elements
from an original seed abstract: title, keyphrases extracted from the abstract (and title),
and verbalized main findings. The extracted keyphrases are also intended to mirror the
annotated MeSH descriptors, which are attached to the title and abstract in a PubMed
entry. The main findings represent the set of relations {r1, r2, . . . , rn} between organisms
and NP reported in the seed article according to the LOTUS database (the expected
output labels). Both the keyphrase extraction and the subsequent generation step can
be framed as instructions-guided tasks: “Extract a list of keywords ...”, “Create a scientific
abstract ...”. As the extracted keywords and keyphrases will provide an essential context
to constrain the generation of the synthetic abstracts, it is also arguably advantageous
that both tasks are carried by the same model.

The extraction of keywords (illustrated in Box A of Figure 3) consists of prompting
the model to extract keywords and keyphrases from the original abstract, and establish
a coherent context for the subsequent generation. However, there is a risk that certain
chemicals or organisms mentioned in the original abstract may also be extracted as
keywords. They could be erroneously mixed by the model with the main findings (the
expected output labels) in the generation step. This could result in the generation of
abstracts with unintended relationships that were not specified in the original main
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Figure 3
Description of the synthetic abstract generation workflow.

findings. To alleviate this potential issue, an exclusion list is created for each input
seed abstract, including organisms and chemicals annotated by LOTUS, their synonyms
from PubChem, and annotations from PubTator (Wei et al. 2019). Then, all extracted
keywords matching items from this list are excluded.

By explicitly formalizing the expected patterns in upstream instructions, the expres-
sion of NP relationships during the generation step can be more efficiently controlled.
The findings-verbalizer module operates as a sampler to emulate and combine various
patterns of expression that can be observed in the literature. It incorporates 5 possible
transformations: (1) members of a same chemical class3 can be replaced by the simple
mention of the class (e.g., a list of chemicals c1:5 is replaced by the more concise mention
“Five Meroterpenoids”); (2) Lists of chemical derivates can be contracted (e.g., “Cystodione
A–D”); (3) The order of relationships is systematically shuffled; (4) Chemicals can be
numbered (e.g., “Cystodione A-D (1–4)”); (5) Directions of the relationship can change
from “O produces C” to “C was isolated from O”. See Box B of Figure 3 and more details in
Appendix A.6. These different transformations are reminiscent of the strategies com-
monly used in data augmentation (Feng et al. 2021).

For each input seed abstract, m instructions are sampled and assembled following
this procedure and forwarded to the model for generation (Box C). See illustrative
examples of abstract generation in Appendix A.7. Finally, the selector module selects
a top k, from the m generated abstracts, ensuring that at least a proportion q of the
expected relations have the labels of the involved organisms and chemicals explicitly
mentioned in the generated abstract (Box D). Regarding the expected output labels,
the replacement operated by transformation (1) also applies: The initial relations r1:5
involving the 5 meroterpenoids are replaced by a single relation r6 involving “Meroter-
penoids” as chemical entity. In contrast, transformation (2) does not affect the output

3 The chemical classes of a compound are determined according to NP-classifier (Kim et al. 2021)
annotations in LOTUS.
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labels, requiring the model to expand the list of relations involving each derivative
(see Box D - Output labels). Also, the loss in Equation 3 (like in Seq2rel) is permutation
sensitive, but the order created by the transformation (3), which also applied to the
output labels, is almost systematically respected by the model in the generated abstract,
alleviating this issue. Transformations (4) and (5) have no influence on the output labels.

3. Empirical Experiments

3.1 Imbalanced Repartition of Reported Relations and Coverage on
Biological Kingdoms

As reported in the original release of the LOTUS dataset (Rutz et al. 2022), the imbalance
in the data distribution manifests at two main levels: the repartition of the number of re-
ported relationships per organism (respectively, chemicals) and the coverage of biolog-
ical kingdoms. These observations were reproduced from the latest available snapshot
of the LOTUS dataset (v10-01-2023),4 containing more than 533,000 distinct relations
between organisms and NP, reported from more than 88,000 articles. As expected, a
small fraction of the organisms (respectively, chemicals) attracts a large proportion of
the relations: more than 72% of relations involve only 20% of the organisms (Figure 4.A).
Beside these Pareto distributions (Newman 2005), the imbalance in the repartition of the
relations across biological kingdoms is also important: 80% are related to Archaeplatida
(Figure 4.B top-left). Considering these two biases is essential to extract a valuable
sample. This motivated the use of the GME-sampler in a stratified way, to maximize
diversity and reduce the Pareto effect, while ensuring a more balanced coverage across
biological kingdoms.

3.2 Dataset Pre-processing

The original dataset was first preprocessed and filtered prior to sampling to eliminate
various sources of perturbations and unusable data in subsequent steps. Specifically,
only documents with publicly available abstracts on PubMed were selected, and these
were further filtered based on the number of reported relations. Indeed, a manual
inspection of a subset of articles revealed that documents reporting large numbers of
relations (Swainston et al. 2016; Thiele et al. 2013; Stefanini et al. 2017; Thompson et al.
2006) often propose genome-scale metabolic reconstructions, large screening analyses,
or database releases. Although these documents may report hundreds of relationships,
they are typically not expressed in the abstracts, making them useless examples for
building a RE model. Only articles reporting fewer than 20 relations (corresponding
to the quantile 93%) were then selected. Compared to organism names, the length
of chemical names can exhibit extreme variability and exceed hundreds of characters
depending on the nomenclature. To mitigate the issues posed by these lengthy labels,
which are inordinate to decode and could consume an excessive portion of the context
window during training and testing, only relations involving chemicals with a label
length l ≤ 60 characters were retained. See more details in Appendix C.1 and the
global pre-processing statistics in Table C.1. The kingdom coverage is also presented
in Figure 4.B top-right.

4 https://zenodo.org/record/7534071.
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Figure 4
A: Distribution of the cumulative proportion of reported relations per fraction of chemicals
(plain line) and organisms (dashed line), ordered by their contributions. The same relations but
reported from different articles are considered as distinct items. From both curves, it can be
estimated that 20% of the most represented chemicals hold more than 68% of the relations, and
20% of the organisms hold more than 72%. B: Repartition of the number of reported relations,
organized per kingdom of the subject organism in 4 datasets: the original (full) dataset, the
pre-processed dataset, the Diversity sample, and Random samples. For Random samples,
proportions are averaged over 5 samples. C: Statistics of the number of distinct organisms,
relations, and chemicals in the Diversity sample compared to Random samples. All samples
contain 2,000 articles. D: Similarly to A, the distribution of the cumulative proportion of reported
relations per fraction of chemicals (top) and organisms (bottom), ordered by their contributions
in three different type of samples: Pre-processed, Diversity, and Random. E: Distribution of the
frequency of mention in distinct articles of chemicals (top) and organisms (bottom). F:
Mismatches between standardized labels of organisms and chemicals and their original literal
mentions in the abstracts of articles reporting the relationships. “Multiple labeled” entities
correspond to multiple co-joined chemical mentions that are not expressed in a continuous
string. See details in Appendix C.2.

3.3 Building a Diversity-augmented Dataset
3.3.1 Diversity-sampling on Organisms and Chemicals. The preprocessed dataset was first
stratified according to the taxonomic classification (kingdoms) of the organisms associ-
ated with the relations reported in each document. Subsequently, the GME-sampler was
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applied to each subset (Figure 5 Top) to monitor the evolution of the diversity metrics
(HS(O) and HS(C)) and determine an optimal sample size. Indeed, the GME-sampler
operates as a ranking method, where the article selected at step n, is the one which
contributes the most to the diversity of the set of the n− 1 articles selected upstream. For
both organisms and chemicals, diversity increases rapidly in the first hundred ranked
items, followed by a plateau. Specifically for organisms (regardless of the kingdom), di-
versity showed a decline in the second half of the sampled items (Appendix Table C.2).
This is the signal that the addition of new articles provide relations for already well-
covered organisms and disrupted the existing balance in the organism distribution. In
contrast, the impact of newly added articles on chemicals is negligible, likely because
they represent a larger set of distinct entities. To keep a reasonable balance between
diversity and sample size, we decided to only retain the top n = 500 ranked articles per
kingdom, ensuring at least 80% of the maximal observed entropy on both organisms
and chemicals (Figure 5 Bottom). The proportions of maximal observed entropy at
alternative sample sizes are presented in Appendix Table C.3.

The impact of the diversity-sampling strategy is evaluated by comparing the com-
position of the sample against 5 random samples of equivalent sizes.5 The original
diversity sample and the extracted random samples are respectively denoted as Di-
versity and Random samples. While showing similar kingdoms’ coverage because of
the common stratification procedure (Figure 4.B Bottom), the diversity sample is, as
expected, significantly richer in terms of distinct number of chemicals, organisms, and
relations (Figure 4.C). This improved diversity is also reflected in a reduced pareto effect
for the distribution of the organisms (negligible for chemicals), and overlap between the
entities reported in each article (Figures 4.D and E).

The diversity-sampling strategy was also evaluated against three alternative base-
lines. In Top-organisms, the top 500 articles with the most distinct organisms (individu-
ally) were extracted per biological kingdoms. This was similarly done for relations and
chemicals with Top-relations and Top-chemicals. As expected, the Top-relations strategy
led to the largest set of distinct relations (Figure 5.B), followed by Top-chemicals and
the proposed diversity-sampling. However, this improvement comes at the expense of
a poorer diversity in terms of organisms, but also balance in their distribution (Fig-
ures 5.C and D). Interestingly, the Top-organisms strategy led to a smaller set of entities
compared to the diversity-sampling. Indeed, in the case of an imbalanced distribution
of entities over the sampled items (i.e., some model organisms attract more articles
than non-model organisms), the simple Top-organisms strategy does not consider this
potential redundancy. However, its prevention is an explicit objective with the proposed
approach. Overall, the evaluated metrics suggest that the diversity-sampling with the
GME-sampler offers a valuable compromise between these alternative strategies.

3.3.2 Distance Between Standardized Annotations and Original Text. Several studies em-
phasize the importance of data quality over quantity for fine-tuning language models
(Zhou et al. 2023; Dettmers et al. 2023; Li et al. 2023). LOTUS data are recognized as
being of high quality, particularly because of the harmonization, cleaning, and valida-
tion steps of the workflow, aligning original records from several open NP databases
into standardized structures and organisms in Wikidata. Although this is essential to
ensure data FAIRness, these processes logically distance the standardized entries from
their original literal mentions in the referenced articles. To get a rough estimate of this

5 Each random sample is composed of 500 random literature items sampled per kingdom.
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Figure 5
A-Top-panel: Evolution of the entropy metric over the distribution of reported organisms (HS(O))
and chemicals (HS(C)) by adding iteratively a new article (d∗) in the built dataset, stratified by
biological kingdom. The step (500) when 80% of the maximal entropy is reached in all the
kingdoms, for organisms and chemicals, is indicated with the black arrow (more details in
Appendix Table C.3). A-Bottom-panel: Zoom of the evolution of HS(O) and HS(C) in the first 500
added articles. For each curve, the knee-points (bending points) with the corresponding ranks
and associated entropies are indicated. Below are presented additional evaluation statistics
(similar to Figure 4 C, D and E) for the diversity-sampling method compared to other potential
sampling objectives. In “Top-organisms sample,” the top 500 articles with the most distinct
organisms (individually) were extracted per biological kingdoms. Similarly, for relations and
chemicals, with “Top-relations sample” and “Top-chemicals sample,” respectively. B: Statistics of the
number of distinct organisms, relations, and chemicals in the Diversity sample compared to
alternative samples. All samples contain 2,000 articles. C: Distribution of the cumulative
proportion of reported relations per fraction of chemicals (top) and organisms (bottom), ordered
by their contributions in the different samples. D: Distribution of the frequency of mention in
distinct articles of chemicals (top) and organisms (bottom) in the different samples.
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distance, the Diversity and the 5 Random samples were merged into a single Extended
dataset. Then, we estimated the proportion of the labels of the standardized entities that
could be found in the original abstracts of articles reporting the relationships. Details of
this estimation are in Appendix C.2. More than 2/3 of the organism labels are effectively
retrieved in the original abstract, while less than half of the chemical names can be
retrieved, even considering their synonyms (Figure 4.F). Assuming that these two types
of mismatches are independent, only 1/3 of the reported pairs would be completely
found in an abstract. Finally, some reported NP relationships are simply not expressed
in the abstract of the cited reference, but have been reported from the body of the article
or supplementary materials.6 Whether they are derived from the Diversity or a Random
sample, these noisy examples make the training of a model challenging because some
labels to be predicted are missing from the input text (Northcutt, Jiang, and Chuang
2021; Jain et al. 2020). In this context, alternative strategies like zero-shot or few-shot
learning (also called in-context learning) based on open LLMs (Liu et al. 2022; Chen
et al. 2022b) also need to be considered.

3.3.3 Creating a Manually Curated Evaluation Dataset. If these discrepancies certainly affect
the training of a model, they are a more sensitive issue in an evaluation set (Northcutt,
Athalye, and Mueller 2021). Also, if diversity can be an important feature for a training
set (Yu, Khadivi, and Xu 2022), it is arguably also important for an evaluation set (Liang
et al. 2022). While smaller by design, the evaluation set needs to be representative.
Finally, because the manual curation of an evaluation set is an expensive and time-
consuming task, the selected set of entries need to be chosen carefully (Sambasivan
et al. 2021). Considering the last points, the knee-points of the entropy curves (where
the entropy increases weaker by new added articles) obtained with the GME-sampler
suggest relevant tradeoffs between sample size and diversity (Figure 5 Bottom-panel)
early in the sampling. Nonetheless, as they vary between different biological kingdoms,
on organisms and chemicals, and could be too restrictive, the extended set of the top
50 items from each kingdom was extracted, resulting in an evaluation dataset of 200
abstracts. The abstracts were manually curated by an expert, annotating all instances
of mentioned organism–NP relationships in their order of appearance in the original
text and using established identifiers such as Wikidata IDs and PubChem IDs. As
isolated chemicals are sometimes grouped into chemical families for the sake of brevity
in abstracts, all mentions of a more general chemical family were also annotated. The
curated evaluation set is publicly available at https://zenodo.org/records/8422007.
Details about the curation protocol are available in Appendix B.1, together with a
comprehensive overview of the content of the dataset in Appendix B.2. Additionally, we
computed the inter-annotator agreement for the organism–NP relationships, based on a
separate set of annotations provided by a second annotator using the same guidelines,
and achieved 88.5%. Details in Appendix B.3.

3.4 Few-shot Learning Approaches the Performance of Standard Fine-tuning on
Raw Data

The mismatches between the standardized labels and the original abstracts have there-
fore been corrected for the evaluation set. However, due to the considerable investment

6 However, we have chosen to focus only on abstracts and not on full texts because of their much greater
availability and their synthetic forms.
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Table 1
Performance of 5-shot in-context learning using LLaMA and LLaMA derived instructions-tuned
models compared to Seq2rel, GPT-2, and BioGPT fine-tuned models. Three types of training
datasets are evaluated: the diversity sample (Diversity-raw), 5 random samples (Random-raw),
and the extended sample (Extended-raw), which is the union of the previous samples. Full is a
dataset that contains all available examples from the LOTUS snapshot, except the 200 used in the
evaluation set. Best performance via fine-tuning are bold, while best performance in few-shot
settings are underlined.

Model Training Precision Recall F1

LLaMA-7B

Few-shot learning (5-shot)

27.0 9.0 13.6
LLaMA-13B 35.6 23.6 28.5
LLaMA-33B 38.5 23.2 29.0
LLaMA-65B 40.2 23.0 29.2
Alpaca-7B 15.1 2.2 5.9
Vicuna-13B 38.4 20.4 26.5

Seq2rel
Random-raw 43.2 +/− (6.7) 4.8 +/− (1.2) 8.6 +/− (2.0)
Diversity-raw 39.6 5.4 9.5
Extended-raw 47.3 5.8 10.4
Full 45.6 7.1 12.2

GPT-2
Random-raw 32.5 +/− (4.8) 11.8 +/− (5.3) 15.0 +/− (2.5)
Diversity-raw 22.3 19.2 20.6
Extended-raw 44.8 21.7 29.3
Full 47.5 22.5 30.5

BioGPT
Random-raw 47.2 +/− (4.0) 19.8 +/− (2.7) 27.6 +/− (2.5)
Diversity-raw 37.1 28.4 32.2
Extended-raw 42.2 26.5 32.5
Full 46.7 21.3 29.3

of time and resources required for this task, the same corrections were not applied on
the remaining data available for training. In this particular context of noisy data for end-
to-end RE, two strategies were evaluated: standard fine-tuning and few-shot learning,
the latter being able to rely only on a few manually selected examples. The performance
of the fine-tuning strategy was evaluated using train/valid datasets derived from the
initial Diversity, Random, and Extended samples, which will be referred to as Diversity-
raw, Random-raw, and Extended-raw, respectively. Specifically, Extended-raw is an
extension of Diversity-raw that also includes all examples from the 5 Random-raw

datasets. To further evaluate the impact of dataset size on training performance, models
were also trained on the Full dataset. The Full dataset is larger than Extended-raw

and contains all available examples from the pre-processed LOTUS dataset (excluding
the 200 used in the test set). Their respective sizes and splits are detailed in Appendix
Table C.4. All datasets were used to train 3 models for end-to-end RE: Seq2rel, BioGPT,
and GPT-2. Six open LLMs were also evaluated in few-shot learning settings: LLaMA
7B, 13B, 33B, and 65B, along with two models, respectively fine-tuned on instructions
and conversations and derived from LLaMA 7B and 13B: Alpaca-7B and Vicuna-13B.

Best performance in fine-tuning settings was achieved by BioGPT (Table 1). Re-
gardless of the training dataset,7 it consistently outperformed Seq2rel and GPT-2 and
demonstrated a F1-score of 32.5% when trained on Extended-raw. We also evaluated

7 With the exception of the instance trained on the Full training set.
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the influence of the different training datasets on models performance. The results
indicate that models trained on Diversity-raw outperformed8 those models trained on
Random-raw, with a notable improvement in recall at the expense of precision. Merging
the datasets into a larger (Extended-raw) also resulted in improved performance for all
models. However, expanding the dataset to all available examples only barely improved
the previous performance and surprisingly underperformed with BioGPT. In few-shot
learning scenarios, the best performance was obtained with LLaMA-65B and declines
with smaller models. Although the performance was inferior compared with fine-tuned
alternatives, the models achieved reasonable scores considering the limited number of
archetypal examples provided. These results also emphasize the potential of few-shot
learning or prompt-tuning based approaches in practical context with low-resources.

3.5 Reversing the Task: Generation of Synthetic Data with Open LLMs

While LLMs cannot compete in terms of performance with fine-tuned approaches in
the evaluated settings, their generative abilities could be used alternatively to address
the main bottleneck: the discrepancies between the input text and the labels in the
training data. It requires going beyond distant supervision or data augmentation (Feng
et al. 2021; Shang et al. 2018; Smirnova and Cudré-Mauroux 2018). The former involves
mapping relationships from a knowledge base to a large corpus of text to generate
pseudo-labels, whereas the latter entails applying a range of transformations, permu-
tations, or morphings to a core set of high-quality examples. The semantic discrepancy
between the input text and the output labels would not be resolved by introducing
syntactic or lexical variations in the original abstracts. Moreover, the results presented in
Table 1 indicate that the inclusion of more training (noisy) instances (Full dataset) does
not result in systematic improvements. In contrast, the adaptive described approach
proposes to generate a set of new synthetic input abstracts from a pre-defined context
and a set of expected output labels (i.e., organism–NP relationships).

To maintain consistency, each synthetic abstract is based on the context and results
reported from an original seed abstract. The first step is to generate the instructions
to prompt the selected LLM for generation. The instructions are composed of a title,
a list of keywords, and the verbalized main findings (Method 2.3). We decided to use
the open source Vicuna-13B (Chiang et al. 2023),9 a LLaMA-13B model fine-tuned on
user-shared conversations collected from ShareGPT,10 which outperforms alternatives
of equivalent sizes on several benchmarks (Dettmers et al. 2023). For each input seed
abstract, the top-10 extracted keywords were used in the built instruction. As this is a
crucial step, the performance of Vicuna-13B to extract keywords have been evaluated
on the SemEval2017-Task10 dataset (Augenstein et al. 2017) in Appendix C.4. To diver-
sify the generated abstracts, m = 10 instruction prompts with different verbalization
patterns were then sampled per initial seed article. Finally, only the top k = 3 most
relevant synthesized abstracts per seed were selected with the simple, yet effective,
selector module.

To evaluate the impact of diversity-sampling on the seed articles used for synthetic
generation, we created two new datasets: Diversity-synth and Random-synth, derived

8 Measured with F1-score, because it penalizes models with unbalanced performance between recall and
precision.

9 version v1.3 from 22/06/2023: https://huggingface.co/lmsys/vicuna-13b-v1.3.
10 https://sharegpt.com/.
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from the original abstracts in the Diversity-raw and Random-raw datasets, respectively.
Several illustrative examples of synthetic abstracts from Diversity-synth are discussed
in Appendix A.7, highlighting both the variability and the potential caveats (errors,
hallucinations) of the process. As with the original data, Diversity-synt and Random-

synt were merged in Extended-synt to measure the impact of the dataset size. Statistics
of the generated datasets are presented in Appendix Table C.4. In total, more than
25,000 synthetic abstracts were generated from the 7,901 originally contained in the raw

datasets. From Diversity-raw, 200 initial items were excluded by the selector module
and 162 on average for Random-raw. While the distinct numbers of entities/relations
dropped in synthetic datasets, the selector guarantees that these labels are part of the
generated abstracts. Furthermore, the generation process enables the integration of
examples with chemical classes in the input text and expected labels, which were not
available in the original data.

3.6 Training on Synthetic Data Improved Performance over Noisy Raw Data

The synthetic datasets were used to train new instances of the previously evaluated
models: Seq2rel, GPT-2, and BioGPT. Although the synthetic training sets (Diversity-
synt and Random-synt) are almost half the size of Extended-raw (respectively, 3,562
and 3,798 compared with 7,111 examples), on which was established the previous
baseline with BioGPT (F1-score = 32.5), all the trained models demonstrated improved
performance (see Table 2). Indeed, all metrics improved in all 9 configurations—3 mod-
els × 3 categories of dataset (Random, Diversity, and Extended)—with the best gains
observed for Seq2rel. The ranges of improvements for precision, recall, and F1-score go
respectively from: 6.2 to 21.9, 13.2 to 25.3, and 12.4 to 30.6. The ranking of the models and
the impact of the synthetic training sets on the final performance align with the previous
observations on the original data. BioGPT models consistently outperformed Seq2rel
and GPT-2, and the training on Diversity-synt resulted in an improved recall at the ex-
pense of precision compared with Random-synt. However, the GPT-2 models trained on

Table 2
Performance of Seq2rel, GPT-2, and BioGPT models fine-tuned on synthetic data. Three types of
synthetic training datasets are evaluated: the diversity sample (Diversty-synt), 5 random
samples (Random-synt), and the extended sample (Extended-synt), which is the union of the
previous samples, all synthetically generated from the corresponding seed original (x-raw)
samples. For Random-synt samples, results are averaged and standard deviations are reported.
Best performances are bold, and second best performances are underlined. The absolute
improvement on all the metrics (precision, recall, and F1-score) for the models (Seq2rel, GPT-2,
and bioGPT) on the 3 types of datasets (Random, Diversity, and Extended) are indicated on the
right.

Model Dataset Precision Recall F1

Seq2rel
Random-synt 62.4 +/− (1.0) (↑ 19.2) 26.8 +/− (2.0) (↑ 22.0) 37.5 +/− (1.9) (↑ 28.9)
Diversity-synt 61.5 (↑ 21.9) 30.7 (↑ 25.3) 40.1 (↑ 30.6)
Extended-synt 65.1 (↑ 17.8) 29.9 (↑ 24.1) 41.0 (↑ 30.6)

GPT-2
Random-synt 42.6 +/− (2.9) (↑ 10.1) 32.7 +/− (2.8) (↑ 20.9) 37.2 +/− (2.8) (↑ 22.2)
Diversity-synt 28.5 (↑ 6.2) 39.4 (↑ 20.2) 33.0 (↑ 12.4)
Extended-synt 52.0 (↑ 7.2) 44.6 (↑ 22.9) 48.0 (↑ 18.7)

BioGPT
Random-synt 56.4 +/− (2.3) (↑ 9.2) 38.8 +/− (1.9) (↑ 19.0) 46.0 +/− 1.1 (↑ 18.4)
Diversity-synt 52.5 (↑ 16.0) 41.2 (↑ 13.2) 46.2 (↑ 14.4)
Extended-synt 63.7 (↑ 21.5) 46.5 (↑ 20.0) 53.8 (↑ 21.3)
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Table 3
Performance of fine-tuned BioGPT-Large models on the Diversity-synt and Extended-synt
datasets.

Model Dataset Precision Recall F1
BioGPT-Large Diversity-synt 57.5 56.9 57.2
BioGPT-Large Extended-synt 69.0 51.6 59.0

Random-synt on average outperformed the one trained on Diversity-synt, a departure
from the trend observed with Seq2rel and BioGPT. Again, the best performance is
achieved by BioGPT trained on the merged set, with F1-score = 53.8.

Finally, two BioGPT-Large models were trained on the Diversity-synt and
Extended-synt (see Table 3). The model trained on Diversity-synt achieved
F1-score = 57.2, comparable to the new best model trained on the much larger merged
set (F1-score = 59.0) and also demonstrated a better recall (56.90 against 51.6).

4. Discussion

The application of deep learning models for the completion of biomedical knowledge
bases is largely limited by the availability and quality of domain-specific labeled data
(Liang et al. 2022). Therefore, we adopted a data-centric methodology (Mazumder et al.
2023; Zha et al. 2023). In order to address the data imbalance and optimize the manual
curation process, we proposed the GME-sampler inspired by diversity metrics com-
monly used in ecology. The sampler was applied on the pre-processed LOTUS dataset
(separately on each biological kingdom) to extract a subset of documents, ensuring a
diverse set of organisms and chemicals in the reported relations. The compositional
analysis revealed a higher number of distinct entities in the extracted sample, but also
a better balance considering the fixed number of items. Diversity has been recognized
as an important factor in a training set for representation learning and improving the
generalization performance of models (Gong, Zhong, and Hu 2019; Yu, Khadivi, and Xu
2022), essential for the NER sub-task. By forcing diversity into the relation partners (or-
ganisms and chemicals), we also expect it to be improved in their mentioning contexts.
Considering the time and domain expertise requirements to annotate an evaluation
dataset, the diversity metric was also used for partitioning. We extracted and manually
annotated a representative subset by extracting the 200 top-diverse items. We hope that
this manually curated evaluation dataset will help the community to build upon this
work.

Despite a smaller number of trained parameters, BioGPT and GPT-2 fine-tuned
with QLoRa clearly outperformed Seq2rel. This highlighted the benefit of the larger
pre-training, but also the effectiveness of the QLoRA strategy, where low-rank updates
of a large, but quantized, model achieve better performance than the full fine-tuning of
a smaller model, for a lower parameter budget (Aghajanyan, Gupta, and Zettlemoyer
2021; Dettmers et al. 2022; Hu et al. 2022). While based on the same architecture,
improvements of BioGPT over GPT-2 can be attributed both to the pre-training on
PubMed and also to the dedicated tokenizer (see Appendix Figure C.2). Beyond the
architectures of the models, the training dataset also had a significant impact on the
performance. A comparison between models trained on the largest (Extended-raw) and
the diversity-optimized dataset revealed that the latter achieved competitive results
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despite its smaller size. Additionally, results also suggest that improving the diversity
of the provided set of examples for training can improve the recall of the model, at
the expense of precision. Intuitively, we speculate that the extensive variety of distinct
named entities present in the Diversity samples (see Figure 4.C) may benefit the NER
sub-task learned by the models. However, an increase in the number of identified
named entities and the complexity of the examples (with more entities comes more
potential relations) could not be as beneficial for the learning of the second sub-task:
RE. This could result in more sensitive models: higher recall but lower precision.
Overall performance (measured by F1-score) is improved with the Diversity dataset
on raw data and is equivalent or better for Seq2rel and BioGPT on synthetic data.
Also, increasing the number of training examples with noisy data also have limited
benefits, as suggested by the comparison with the (Full) training dataset extended to
all available data (no sampling, no stratification) (Salhofer, Liu, and Kern 2022; Prusa,
Khoshgoftaar, and Seliya 2015; Liang et al. 2022). Finally, few-shot learning techniques
leveraging open LLMs exhibit reasonable performance (see LLaMA-65B) and can be
particularly valuable when only limited or noisy data are available. However, their
larger size may incur higher management costs, necessitating careful consideration of
resource allocation.

Instead of using them to directly perform the task, we then propose to use them to
generate synthetic examples and alleviate the noise of the dataset. However, evaluating
the quality of the generated abstracts is challenging. Although the process is prone to
hallucinations, the factuality is not the key criteria, as long as the generated texts are
credible, meaning that they are coherent and adhere to the established syntax, style, and
patterns of expression of the relations in human-written abstracts. Since the training sets
of LLMs contain scientific articles and abstracts, they have absorbed their stylistic and
syntactic specificities. The generation of synthetic data could then be seen as a form
of knowledge distillation. Moreover, while previous studies have suggested that LLMs
may not be knowledgeable (Cao et al. 2021; Si et al. 2023; Mallen et al. 2023), other
investigations have highlighted the remarkable capabilities of chatbot and instructions-
tuned models in following style instructions (Pu and Demberg 2023; Chia et al. 2024).
Then, a first relevant evaluation criteria for these synthetic data is the improvement on
the performance they provided. Additionally, we measured the textual similarities be-
tween synthetic data and original abstracts from the natural products’ literature with an
n-gram overlap analysis in Appendix A.8. The impact of hallucinations (more precisely
instruction inconsistencies) on synthetic data and performance of trained models is also
evaluated.

All three models, with different architectures or pre-training data, demonstrated
improvements across all metrics, on the 3 categories of datasets (Random, Diversity,
Extended), highlighting the benefits of synthetic data in contexts of initial sparse la-
beled data. Also, transitioning from raw noisy data to synthetic data did not alter
the previously observed trend: BioGPT outperformed other models, and the diversity-
optimized sampling had a positive effect on the recall of trained models when used to
select the seed articles. Most importantly, we noticed that the transition from original
to synthetic data had a more determinant impact on the performance improvements
than the choice of the model architecture (Seq2rel, GPT-2, BioGPT). For instance, the
influence of synthetic data on the performance of BioGPT and GPT-2 is greater than
the difference between the two fine-tuned models. The performance of Seq2rel was
also enhanced almost by a factor of 4, notably narrowing the gap with GPT models.
Similarly, scaling-up the architecture with Bio-Large (> 4.5× larger) indeed resulted in
improved performance, but comparable to the previous enhancement obtained with
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synthetic data. Also, we noticed a clear impact of the training dataset, with the best
observed recall achieved with Diversity-synt. These results also support the data-
centric view, even in low-resource scenarios, by demonstrating improved performance
over other strategies such as few-shot learning (Xu et al. 2022).

5. Limits and Future Work

Fine-tuned methods exhibit superior performance compared with zero-shot/few-shot
approaches. However, the basic prompting approach used in the experiments may not
fully demonstrate the capabilities of the models, and alternative strategies have been
proposed (Zhao et al. 2021; Wu et al. 2023; Liu et al. 2022). Nevertheless, Jimenez
Gutierrez et al. (2022) noted that even with these improvements, the models still lack the
accuracy of fine-tuned approaches with qualitative data. The use of LLMs to generate
abstracts also has some evident limitations. The generated abstracts exhibit a narrow
range of styles to express the relationships between organisms and chemicals compared
to human-written abstracts. Although we argued that strict data augmentation could
not effectively bridge the initial gap between text and labels, token or sentence level
augmentations on generated abstracts could, however, improve both the quantity and
diversity of synthetic data (Chen et al. 2023). We suppose that the synthetic data mostly
improved the recognition of organism and chemical entities, this sub-task being inher-
ently embedded in the ultimate task of decoding the relationships. Following Kim et al.
(2022), LLMs could also be used to generate alternative demonstrations for in-context
learning. Nonetheless, such approaches need to be further evaluated in the specific
context of the biomedical literature.

Although the proposed framework is effective, it cannot guarantee the true diver-
sity of the generated abstracts and the final selection may be very similar. Secondly,
the selector module does not ensure that the relations are semantically expressed in the
generated abstracts, as it only checks for the explicit mention of the entities. Finally, all
generated examples are designed as “positive” cases, meaning that a relation is always
expected, which may not be the case in practical applications. The developed models
are intended for use on a large corpus of articles and the input documents can be either
selected by an upstream retriever component, or, the predictions can be re-evaluated
by a downstream selector. Continuing with this data-centric view, future works will
prioritize improving the three key components (instructions builder, generator, and
selector) to improve the diversity of the synthetic abstracts, rather than focusing on the
architecture of the trained models.

Given the highly dynamic nature of the LLM research area, we anticipate significant
advancements in model architecture and accessibility to arise from the research com-
munity. At the date of writing, the release of LLaMA (and LLaMA2) has paved the way
for the creation of more open-license models, such as the next-generation of Vicuna,11

Mixtral (Jiang et al. 2024), or PMC-LLaMA (Wu et al. 2024), and BioMistral (Labrak et al.
2024) trained on the biomedical literature. The development of multilingual open LLMs
(Scao et al. 2022) also offers opportunities for synthetic data generation in promising
areas, such as the extraction of plant-disease relationships from Traditional Chinese
Medicine prescriptions, where the scarcity of labeled data is limiting (Li et al. 2022).

11 https://huggingface.co/lmsys/vicuna-13b-v1.5.
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6. Conclusion

With the aim of assisting the completion of NP databases, we provide the first train-
ing and evaluation datasets along with the first trained models for end-to-end RE of
relationships between organisms and chemicals. Along with these main results, we
explored different strategies and proposed new developments to address the prob-
lematics raised in this biomedical context. We empirically showed the benefit of the
proposed GME-sampler for building a diverse and balanced evaluation dataset as well
as its positive impact on the recall via the training data. The results also indicate that
the opportunities brought by the open LLMs in scenarios with little or weakly labeled
data may not lie only in their zero/few-shot learning abilities, but also in their great
potential as synthetic data generator. They could open the door for the extraction
of previously unexplored relationships between biomedical entities expressed in the
literature, a prerequisite to unlock new paths of inferences in knowledge discovery.
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Appendix A. Experimental Setup and Implementation Details

A.1 Few-shot In-context Learning Details

The prompt used for few-shot in-context learning with K = 5 archetypal input-
completion examples with LLaMA (7B, 13B, 33B, 65B) is provided in Figure A.1. We
used greedy decoding, setting the temperature to 0. Considering their particular fine-
tuning, small adjustments were provided to the prompt for Alpaca-7B and Vicuna-13B.
All models were also quantized for memory efficient inferences, and average inference
times are presented in Table A.1. Considering our available resources, we were not
able to use the q8 (8 bits) quantization for LLaMA models > 13B and improvements
in performance could then be expected. In parallel, we noticed significant perfor-
mance degradations when using q4 (4 bits). We used llama.cpp12 for quantization and
inferences.

Figure A.1
The prompt used for few-shot learning on LLaMA (7B, 13B, 33B, and 65B) models and
containing five archetypical examples.

Table A.1
Table of the applied quantizations on the LLMs. See https://github.com/ggerganov
/llama.cpp. The inference time (in ms) was also measured in 5-shot in-context learning settings
on the provided evaluation dataset.

Model Quantization type (size in GB) Average inference time in ms (± sd)
LLaMA-7B q8 (6.8 GB) 38,672 (± 22,418)
LLaMA-13B q8 (13.2 GB) 74,102 (± 6,955)
LLaMA-33B q5 K M (21.9 GB) 143,418 (± 72,740)
LLaMA-65B q5 K M (44.1 GB) 238,103 (± 122,970)
Alpaca-7B q8 (6.8 GB) 32,293 (± 16,099)
Vicuna-13B q8 (13.2 GB) 67,504 (± 32,642)

12 llama.cpp github repo: https://github.com/ggerganov/llama.cpp.
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Table A.2
Statistics of the number of trainable parameters per evaluated models.

Total parameters Trainable parameters
Seq2rel 118546185 118546185 (100%)
BioGPT 350649472 3886208 (1.11%)
BioGPT-Large 1582722536 11533736 (0.73%)
GPT-2 Medium 358381208 3555992 (0.99%)

A.2 Choice of the Models

We selected 3 models for evaluation: Seq2Rel,13 BioGPT14 (and its variant BioGPT-
Large15), and GPT-2.16 Seq2rel was originally designed for end-to-end RE, and was
later outperformed by BioGPT. With this minimal set of models, we aim to evaluate
the performance of two distinct architectures: Seq2Rel (encoder-decoder) and BioGPT
or GPT-2 (encoder-only). Note that BioGPT and GPT-2 share the same architecture.
Additionally, we evaluate two pre-training settings: BioGPT on Pubmed articles17 and
GPT-2 on a non-biomedical corpus. Furthermore, we explore two training approaches:
full fine-tuning on Seq2rel and tuning via adapters with QLoRA on BioGPT and GPT-2.
The number of trained parameters for each model is detailed in Table A.2.

A.3 Fine-tuning Details

Dettmers et al. (2023) demonstrated the efficacy of the QLoRA approach by showing
that the loss in performance due to quantization can be fully recovered through subse-
quent fine-tuning of the adapters, and that increasing the number of adapters is crucial
to match full fine-tuning performance. By exploiting the memory benefits of the NF4

data type, we applied LoRA adapters to all linear blocks (except the initial embeddings
layer) of the BioGPT and GPT-2 models. Details on the number of trained parameters
are presented in Table A.2. During training, the special tokens <BOS> and <EOS> are used
to delimitate the input X and the expected linearized output Y, such as [X, <EOS> <BOS>,
Y, <EOS>]. The <BOS> token triggers the RE task at inference time.

For all evaluated datasets, models were then trained during 15 epochs (10 for
BioGPT-Large) with 100 warm-up steps and the best epoch was selected using the val-
idation set. We set learning-rate = 1e− 4, LoRA-r = 8, LoRA-α = 16, batch size = 16.
We used the available implementation of QLoRA with PEFT (Mangrulkar et al. 2022).
We used the recommended 8− bits paged AdamW optimizer18 (Dettmers et al. 2022).

For Seq2rel, we applied a standard full fine-tunings as in the original article. All the
fine-tuning experiments were conducted on an NVIDIA GeForce RTX 3090. See details
on hyperparameter tuning in Section A.4.

13 Link to Seq2rel GitHub: https://github.com/JohnGiorgi/seq2rel.
14 Link to BioGPT model card: https://huggingface.co/microsoft/biogpt.
15 Link to BioGPT-Large model card: https://huggingface.co/microsoft/BioGPT-Large.
16 Link to GPT-2 model card: https://huggingface.co/openai-community/gpt2-medium.
17 Also, the encoder used for Seq2rel is also PubMedBERT: https://huggingface.co/microsoft

/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext.
18 https://github.com/TimDettmers/bitsandbytes.
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Table A.3
Hyperparameter values used for BioGPT. Hyperparameters were fine-tuned using Optuna on
the Diversity-synt dataset. Values between parentheses correspond to adaptation for
BioGPT-Large. The following settings were evaluated: batch size ∈ {4, 8, 16}; learning-rate
∈ [1e− 6; 1e− 3]; LoRA configurations ∈ {(r = 4,α = 4), (r = 4,α = 8), (r = 4,α = 16), (r =
8,α = 8), (r = 8,α = 16), (r = 8,α = 32), (r = 16,α = 16), (r = 16,α = 32), (r =, 16α = 64)}.
Gradient accumulation steps values were directly scaled in inverse proportion to the batch
size: {20, 10, 5}. For the decoding strategies, the following settings were also evaluated:
beam-size ∈ {3, 5}; stopping criteria ∈ {True, False, never}; length penality ∈ [0, 3].

Tuned ? Value

Training
Batch size yes 16 (12)
Number of epochs no 15
LoRa r yes 8
LoRa alpha yes 16
Learning rate yes 1.00e-4
Weight decay no 0.01
Gradient accumulation steps no* 5
LoRA dropout no 0.05
LoRa target modules no q proj, k proj, v proj, out proj, fc1, fc2, output projection
Decoding
strategy yes beam search
beam size yes 3
stopping criteria yes never
length penality yes 1.5
temperature no 0

A.4 Hyperparameter Tuning

Hyperparameter settings, including learning-rate, batch size, and LoRA config, were
evaluated on the Diversity-synt dataset with Optuna (Akiba et al. 2019). A summary
of the hyperparameters tuned for BioGPT is presented in Table A.3. The F1-score on
the validation set was used as evaluation criteria. In line with Giorgi, Bader, and Wang
(2022), a greedy decoding approach was utilized during the hyperparameter tuning
phase, followed by a fine-tuning of the decoding strategy on the configuration that
yielded the best results. The experimental setup involved n = 140 trials, each consist-
ing of 5 epochs, and was executed using the TPE (Tree-structured Parzen Estimator)
sampler and a median pruner. The results of the hyperparameter optimization are
presented in Table A.3.

The relationships between hyperparameters and performance are depicted in panel
A of Figure A.2. While the batch size and the LoRA configuration don’t show strong
impact on the final performance, the learning rate was identified as a critical parameter.
With the TPE sampler, the learning-rate of the trials rapidly converged around 1e− 4,
resulting in stable performance across different batch sizes and LoRA configurations.
The impact of the LoRA rank r is more precisely illustrated in panels B and C. As
previously observed by Aghajanyan, Gupta, and Zettlemoyer (2021) and Hu et al.
(2022), increasing the rank of the LoRA adapters from r = 8 to r = 16 resulted in only
marginal improvements, considering the doubling of the number of trained parameters.
The boxplots in panel C also highlight close performance with small variability on
validation F1-score for trials with LoRA r = 8 and r = 16. After choosing the final

977



Computational Linguistics Volume 50, Number 3

training configuration (lr = 1e− 4, r = 8,α = 16, batch size = 16), the decoding strategy
was fine-tuned with 40 trials, evaluating greedy decoding and beam search with beam
sizes of 3 or 5 (see panel D). Ultimately, beam search with beam size = 3 was selected.
The best hyperparameter settings obtained for BioGPT were reused for GPT-2 as they
share the same architecture, and later for BioGPT-Large.

Similarly to the panel A in Figure A.2, the same hyperparameter tuning experiments
were conducted for Seq2rel (see Figure A.3). It consisted of 30 trials on 10 epochs on
the Diversity-synt dataset. A summary of the hyperparameters tuned for Seq2rel is
presented in Table A.4.

A.5 Evaluation Details

All evaluated models (in fine-tuning and few-shot settings) were evaluated for end-to-
end RE, jointly performing NER and RE, framed as a generative task. The performance
of the tested models were assessed by measuring the F1-score over the predicted

Figure A.2
A: Analysis of hyperparameters for the fine-tuning of BioGPT. The hyperparameter tuning
initially consist of 140 trials with the TPE sampler and a median pruner. Only the 96 ‘completed’
trials are considered (44 trials were pruned). The trials were computed with 5 epochs, on the
Diversity-synt dataset (train and valid). Each line represents a trial, and the color is scaled by
the final F1-score obtained on the validation dataset for this trial. While the batch size and the
LoRA configuration don’t show substantial impact on the final performance, the learning rate
(lr) was identified as a key parameter. B: Same as A, but the lines (representing trials) are colored
by the LoRA r parameter (4, 8, or 16). C: Boxplot representing the median and variability of the
F1-score on the validation datasets from trials using LoRA r = 8 or r = 16. The number of
concerned trials is indicated on the top. D: Hyperparameter tuning for the decoding strategy.
The boxplots illustrate the distribution of the obtained F1-score on 40 trials for the two evaluated
strategies: greedy decoding and beam search, with beam size of 3 or 5. The BioGPT model
correspond to the selected configuration (lr = 1e− 4, r = 8, α = 16, batch size = 16). The length
penalty and the stopping criteria were also evaluated but did not show significant impact, so
they were not included in the figure.
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Figure A.3
Analysis of hyperparameters for the fine-tuning of Seq2rel. The hyperparameter tuning initially
consist of 30 trials with the TPE sampler. The trials were computed with 10 epochs, on the
Diversity-synt dataset (train and valid). Each line represents a trial and the color is scaled by
the final F1-score obtained on the validation dataset for this trial.

Table A.4
Hyperparameter values used for Seq2rel. Hyperparameters were fine-tuned using Optuna on
the Diversity-synt dataset. All non-mentioned parameters were set according to the CDR
configuration in the original Seq2rel’s article. The following configurations were evaluated:
decoder’s learning-rate ∈ [1e− 6; 1e− 3]; beam-size ∈ [3, 5]; length penality ∈ [1, 3].

Tuned ? Value
Training //
decodr learning rate yes 9.00e-4
batch size no 4
number of epochs yes 20
gradient accumulation steps no 10
others no identifical to seq2rel’s CDR config
Decoding //
beam size yes 5
length penality yes 1

relations extracted from the decoded outputs. An extracted relation is considered correct
only if the head (an organism) and the tail (a chemical) entities exactly match the
ground-truth labels.

A.6 Main Findings: Verbalization Patterns

To emulate different patterns of expression of the NP relationships, 5 transformations
are applied: (1) chemical class replacement, (2) derivates contraction, (3) shuffling, (4)
numbering, and (5) relation directionality. The findings-verbalizer module operates
as a sampler, and each transformation has an assigned probability. In the conducted
experiments, we used p1 = 0.2, p2 = 0.9, p3 = 1 (systematic shuffle), p4 = 0.25, and
p5 = 0.9 for the corresponding transformations. The values were empirically estimated
from observed behaviors in the literature. To enhance the diversity of the generated
abstracts, the temperature parameter is also randomly sampled in the next genera-
tion step: t ∈ {0.5, 0.6, 0.7, 0.8}, as similarly evaluated by Chung, Kamar, and Amershi
(2023). All other decoding parameters were set by default: top-K = 40, top-P = 0.95, and
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repeat-penalty = 1.1. Similarly to few-shot learning, we also used llama.cpp through
the Python bindings library llama-cpp-python19 for inference in generating the syn-
thetic abstracts. We monitored the generation time and observed that on average20 a
synthetic abstract is produced in 35,708 (±13, 945) ms, showing a significant variability
depending on the prompt (min ≈ 10s and max ≈ 2 min). All generation experiments
were conducted on a NVIDIA GeForce RTX 3090.

A.7 Examples of LLM Prompting for Synthetic Abstract Generation

The following section provides archetypal examples to illustrate the diversity engen-
dered by the synthetic abstract generation process. Recall that each generation is cal-
ibrated with an original title, a set of keyphrases derived from the original abstract,
and verbalized main findings. In the latter, 5 main transformations can be applied to
improve the diversity of the generation (see Method 2.3).

These transformations allow for the generation of multiple alternative synthetic ab-
stracts, which emulate different syntaxes or styles for communicating the isolation of the
same set of compounds (see Figure A.4). A serves as a reference for a standard instruc-
tion/generation. The example B introduces variations by reshuffling the order of the
mentioned chemicals and then numbering them. In C, different subsets of compounds
were substituted with their associated chemical families. In A and B, the expected out-
put labels align with the verbalized main findings, e.g: “Lachnum papyraceum produces
6-Methoxymellein; Lachnum papyraceum produces 4-Chloro-6-methoxymellein, ...”. In
C, they are substituted by the chemical classes: “Lachnum papyraceum produces Cou-
marins; etc..”

However, for multiple co-joined chemicals (Figure A.5), while the synthetic text
mention “cytosporones J-N, pestalasins A-E”, the outputs are expected to be expanded
like: “Cytosporone J, Cytosporone K, Cytosporone L, . . . , Pestalasin A, Pestalasin B,
. . . , Pestalasin E”. Verbalized relations can also exhibit a N:M pattern, when multiple
compounds are isolated from multiple organisms, showcasing the model creative gen-
eration abilities (Figure A.6).

The generation process is subject to certain limitations and can occasionally pro-
duce inaccuracies of a similar nature to those that were intended to be mitigated. In
Figure A.7, while it is explicitly indicated in the instruction part that “Tagetes erecta
produces two Flavonoids”, this information does not appear in the generated abstract.
Additionally, the NPs isolated from Tagetes lucida are qualified as Flavonoids, which is a
wrong assertion, i.e., a hallucination. The synthetic abstracts frequently exhibit instances
of hallucinations, yet, these do not significantly impair their utility for the specific task of
RE, as long as they do not pertain to the expression of the relationships (see Figure A.8).

A.8 Synthetic Abstracts: Empirical Analysis of N-gram Overlap and
Impact of Hallucinations

N-gram-based metrics (e.g., BLEU-score) have been widely used to assess the quality
of text generation in machine translation and for author-style classification (Papineni
et al. 2001; Sidorov et al. 2014; Rı́os-Toledo et al. 2022). Intuitively, n-grams capture the
frequency of words, as well as lexical and syntactic properties of a text. We computed

19 https://github.com/abetlen/llama-cpp-python.
20 On the 15190 generations used for the Diversity-synt dataset.
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Figure A.4
Three generated abstracts from the seed article PMID: 7730162. A is a standard generation. In B,
the chemicals are shuffled and numbered. In C chemicals were substituted with their
corresponding chemical families. All generation was produced with temp = 0.7 and are training
examples from the Diversity-synt dataset.

Figure A.5
An example of an abstract generation with multiple co-joined chemicals in the instruction. The
original seed article is PMID 19762244. The generation was produced with temp = 0.7. It is a
training example from the Diversity-synt dataset.

the proportion of overlap between the top-50, top-100, and top-500 most frequent word
n-grams in the generated abstracts compared to three distinct reference sets: the original
seed articles used for generation (vs. Originals), random articles sampled from LOTUS
(vs. LOTUS), and random articles from PubMed (vs. Randoms). By comparing the n-
gram overlaps, we aim to determine if the generated abstracts are more similar to those
from the natural products literature (Originals and LOTUS) than to random biomedical
abstracts from PubMed (Randoms). Panel A in Figure A.9 shows a similar proportion
of n-gram overlap between synthetic abstracts and the Originals and LOTUS sets, also
consistently better than with random articles. Such frequent and shared n-gram include
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Figure A.6
An example of an abstract generation with an N:M-type relations. The original seed article is
PMID 20382006. The generation was produced with temp = 0.7. It is a training example from the
Diversity-synt dataset.

Figure A.7
An example of an abstract generation with incorrectly added and removed relations. The
original seed article is PMID 19127719. The generation was produced with temp = 0.5. It is a
training example from the Diversity-synt dataset.

for instance: “were isolated from”, “structures were elucidated”, “1D and 2D NMR”, “with
IC50 values”, etc.

The impact of hallucinations on the quality of synthetic data is also important
to consider. We suggested that factual hallucinations on contextual elements in the
generated abstracts (e.g., Figure A.8) are less harmful for the quality of synthetic data,
than hallucinations related to the expression of the relations in the main findings (e.g.,
Figure A.7). These hallucinations are classified as Instruction inconsistency, when the
output of the LLM deviates from the user instructions (Huang et al. 2023).

To evaluate their impact on the performance of trained models, we constructed a
new synthetic dataset, based on the same seed abstracts as Disversity-synt, but using
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Figure A.8
An example of an abstract generation with a context hallucination. The original seed article is
PMID 23758051. The generation was produced with temp = 0.5. It is a training example from the
Diversity-synt dataset.

a dedicated decoding strategy. We fixed the temperature at t = 2 for all generations and
used a top-k = 500 sampling strategy. With these decoding parameters, we intended to
lower the quality of the generations by stimulating the “creativity” and increasing the
frequency of instruction inconsistencies (Huang et al. 2023; Holtzman et al. 2020).

Panel B in Figure A.9 shows the distribution of the score obtained with the selector
module between Diversity-synt and the newly created dataset Diversity-synt-2.
Recall that the selector measures the proportion q of the relations, from the expected
output labels, that have both their head and tail entities explicitly mentioned in the
generated abstract. The observed shift clearly suggests more frequent inconsistencies
between instructions and generated texts in Diversity-synt-2, where at least one
member of a relation stated in the instructions is more frequently omitted.

Finally, we re-trained the 3 models (Seq2rel, GPT-2, and BioGPT) on two new train-
ing datasets from the new generations (with promoted hallucinations), and conducted
an ablation study on the selector module. The dataset Diversity-synt-2-selector

uses the implemented selector module to select the top-k = 3 generations per seed
articles, while the selection was random for Diversity-synt-2-NO-selector. Seq2rel
(encoder-decoder) performs robustly when trained on Diversity-synt-2-selector,
while BioGPT and GPT-2 exhibit a more significant decrease in F1-score. However,
all models show a decrease in performance when trained on Diversity-synt-2-NO-

selector. Notably, Seq2rel and BioGPT models still perform better when trained on
synthetic data with promoted hallucinations, than on the raw noisy data.

Together with these new results, our general observations suggest that generated
abstracts exhibit typical lexical and syntactic features of the literature on natural prod-
ucts. The n-gram distribution of the synthetic data is more similar to the natural product
literature than to random abstracts, and models trained on these data outperform
models trained on the raw noisy data. The results on the newly generated datasets with
promoted hallucinations show a decrease in performance across all trained models. This
decrease, coupled with our analysis of the selector’s score distribution, suggests that
hallucinations, especially those related to the expression of the main findings (instruc-
tion inconsistencies), negatively impact model performance. The selector module can
then alleviate this issue by excluding these undesirable generations.
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Figure A.9
A: Proportion of overlap in the top-50, top-100, and top-500 of the most frequent word n-grams
(n = 1,2,3,4), from the Diversity-synt dataset, compared to 3 references: The original seed
articles used for generation (vs. Originals), random articles sampled from LOTUS (vs. LOTUS),
random articles from PubMed (vs. Randoms). The size of each reference set is equivalent to the
size of the Original set (n = 1,519). For vs. LOTUS and vs. Randoms, the overlap values are
averaged against 5 different random samples and the standard deviation is indicated. B:
Histogram representing the distribution of the selector’s score for all the generations between
Diversity-synt and Diversity-synt-2. There are 15,190 generations per datasets (m = 10
generation per seed article). The Diversity-synt-2 dataset is a new generated dataset using
specific decoding parameters (temperature = 2 and top-k = 500) to promote hallucinations and
instruction inconsistencies. C: Performance of fine-tuned models on new synthetic datasets with
promoted hallucinations. Both were created using the same decoding strategy (temperature = 2
and top-k = 500), but the selector step was removed for Diversity-synt-2-NO-selector,
resulting in a random selection of the generations. The respective size of the datasets are 3,045
and 3,562. Diversity-synt-2-NO-selector was sampled to match the size of the Diversity-
synt dataset.

Appendix B. Evaluation Dataset

B.1 Dataset Curation Protocol

Biocurator: The dataset was curated by a single curator with a PhD in microbiology and
prior experience in manual curation. A second annotator with a background in biology
re-annotated the dataset to measure the inter-annotator agreement (IAA).

Article selection: Articles were selected using the proposed GME-sampler, by extracting
the top-200 literature references which maximize the diversity of named entities. All
selected articles have a PMID, an available abstract, a title, and are available online on
PubMed. No filter was applied based on the journal or the publication date.

Objective: The curator targeted the relations between organisms (head) and their iso-
lated natural products (tail) in the abstracts. Only organisms and chemicals that are
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involved in NP relationships are extracted. For example, organisms on which the activ-
ity of a compound is tested (e.g., a pathogen like Bacillus cereus) are not annotated. The
available LOTUS annotations were always used as a starting point.

Annotation of chemical entities: All chemical entities are categorized as either singular
chemical (e.g., hispaglabridin A) or chemical classes (e.g., Isoflavanoids). The nature of
these entities was cross-validated with the standard ChEBI Ontology when necessary.
For singular chemicals, information about their chemical class is also extracted if it is
mentioned in the article. Importantly, the label of the chemical entity is annotated as
it is mentioned in the abstract. To align with the original LOTUS data, Wikidata and
PubChem identifiers were assigned to chemicals and classes when available. In cases
of ambiguity, the curator refers to the full-text (if available) to obtain more detailed
information and assign the correct standardized entity. If the entity is not found in
Wikidata, a dedicated identifier in the format “{pmid}CHEM{N}” is assigned instead,
e.g., “11421752CHEM1”.

Annotation of organism entities: Similarly to chemicals, the name of the organism is
annotated exactly as it appears in the abstract. When only the genus is determined (e.g.,
Plakinastrella sp.), the genus name serves as the label.

Annotation of relations: The output labels only include relations explicitly mentioned
in the abstract, while relations mentioned in the full-text are excluded. The relations are
annotated based on their order of appearance in the abstract. If there are more than one
organism, the relations of the first organism are annotated first, followed by the relations
of the other organisms in order of appearance.

Export: The annotations are exported in a JSON-format as illustrated in Figure B.1 along
with more statistics on the annotation.

B.2 Evaluation Dataset: Content Overview

An in-depth evaluation of the content of the curated dataset is provided in Figure B.2.
The median number of relations, chemicals, and organisms, per curated abstracts are
respectively 6, 5, and 1 (Panels A, B, C). Most of the studies included in the dataset
focused on identifying natural products (up to max 22) from one specific organism.
However, as illustrated in panels D and E, almost all chemicals and organisms only
manifest once in the dataset, minimizing the overlap between the mentioned entities in
each document. This is expected as a result of the diversity-sampling. Considering the
applied stratification procedure, the distribution of the biological kingdoms (panel F)
also shows a relatively balanced repartition.

The composition of the curated evaluation dataset, in terms of number of distinct
entities and relationships, is also compared to 5 random sets of equivalent sizes in
Table B.1. Firstly, 13 abstracts did not mention any relationships between organisms and
chemicals in the curated dataset. Secondly, for the random sets, statistics were directly
estimated from the LOTUS annotations. Then, they may represent an overestimate of
the actual number of distinct entities, given that a manual curation could potentially
eliminate some irrelevant annotations that are actually not mentioned in the abstracts.
They should therefore be regarded as an approximate upper bound. Considering the
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Figure B.1
An example of a curated literature reference in the evaluation dataset with supplementary
statistics.

Table B.1
Statistics of the number of organisms, chemicals, and relations in the top-200 abstracts selected
and curated in the evaluation set, compared to 200 randomly selected items (statistics averaged
over 5 random seeds). For the evaluation set, the number of annotated distinct chemical
compounds and chemical classes are respectively indicated between parentheses. In the curated
evaluation set, 13 references had no relation directly expressed in the abstract.

# Organisms # Chemicals # Relations # References

eval-set (top-200 diversity) 275 1,197 (1,092 / 105) 1,488 (1,297 / 191) 200 (187*)
Random (200 articles) 238 610 699 200

last points, the proposed strategy for selecting the evaluation set has significantly
improved the diversity.

B.3 Inter-annotator Agreement

To assess the quality of the annotations in the evaluation dataset, we computed the IAA
for the extracted relationships, following the same method as in Li et al. (2016). We use
the Jaccard Index to measure the IAA, considering the union of all the extracted relations
with a second annotator, who followed the same guidelines. A disagreement between
the annotators occurred when there was a mismatch in the label or type of the chemical
(“chemical” or “class”), or, in the label of the organism.
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Figure B.2
Panels A, B, and C respectively represent the distribution of the number of relations, chemicals,
and organisms per annotated abstracts (200). Panel D represents the distribution of the
frequency of mention of the 275 distinct organisms in the corpus, and similarly for chemicals in
panel E. Panel F shows the distribution of the biological kingdoms of the annotated organisms in
the curated dataset. Panel G is the repartition of the sources of disagreement between
annotations gathered from the annotators. The 179 disagreements are qualified in 3 categories:
Organism mention disagreement occurs when the 2 annotators disagree on the label of an
organism entity; Chemical mention disagreement occurs when either the name or type of the
extracted chemical mentioned differed; Relation disagreement arises when annotators disagree
on the status of the relationship between a chemical entity and an organism in the text.

The observed IAA score is 88.5%. Out of the 1,569 annotations provided by the
two annotators, 179 were subject to disagreements. An analysis of the disagreements
is provided in panel G of Figure B.2. For example, in PMID 16595963, the first anno-
tator annotated the compound 4 as “GS-4”, while the second annotator used the later
identification “(4R,4aS,9aR)-1,9a-dihydronidulalin A” (Chemical mention disagreement).
In another example, in PMID 32193929, the ambiguous links between “oudemansins”,
“oudemansinols”, “polyketides”, and “Favolaschia calocera” were the subject of a dis-
agreement between the annotators on the status of the relationships (Relation disagree-
ment). Overall, while the identification of organisms involved in a relation from the
text was almost always in agreement, the main sources of disagreements concern the
status of relationships and the identifications (the extracted labels) of the chemicals (or
classes).

Appendix C. Supplementary Materials

C.1 Chemical Length Thresholding

To determine a reasonable threshold for filtering chemical labels with excessive length,
we conducted a comparative analysis of the distribution of label lengths in LOTUS
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(derived from Wikidata) versus their corresponding IUPAC names (See Figure C.1).
While the respective median and mean values clearly suggest that most of the available
chemicals are identified with common names (i.e., shorter), the long right-tail of labels
exhibit a length comparable to IUPAC names. These longer labels are often too lengthy
to be practical for use in training examples for the targeted RE task. By estimating the
limit when 90% of the chemical labels in LOTUS are at least as long as their correspond-
ing IUPAC name, we estimated that a threshold of 60 characters effectively filters out
excessively long labels.

C.2 Mismatches Between Standardized Labels and Original Abstracts

The 7,901 available abstracts from the literature references in the Extended dataset
were extracted using the NCBI E-utilities efectch service. All the organism labels
available on Wikidata were directly matched on the abstracts. Using the PubChem
exchange service, all the synonyms (direct synonyms of the molecule and synonyms
of its stereoisomers) were extracted when a PubChem ID was available. In total, 653,749
synonyms were extracted. A chemical entity was considered as mentioned in the ab-
stract when there is an exact match of its name or one of its synonym in the abstract.
Some chemicals, however, may also only be implicitly mentioned in an abstract. Indeed,
the isolation of multiple derivatives, such as Atroviridin A, B, and C, is typical reported
as “Atroviridins A-C”. Then, Atroviridin B would not be explicitly mentioned and has
to be infered. All chemicals which could be part of such expressions were identified
using a set of regular expressions and were treated separately to not wrongly inflate

Figure C.1
Distribution of the number of characters in chemical names between Wikidata labels and their
corresponding IUPAC name. The integrated graph indicates the proportion of chemicals for
which the length of the Wikidata label is longer or equal to the IUPAC name, by increasing the
number of characters in the Wikidata label. The black vertical line corresponds to the chosen
threshold at 60 characters.
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the proportion of chemicals not mentioned in the abstracts. Nonetheless, it is worth
mentioning that a non-negligeable part of these multiple chemical entities are simply
not mentioned in the abstract, either explicitly or implicitly. For instance, see the original
mentions of malyngamide A21 in PMID 10924193, 11076568, and 21341718.

C.3 Raw and Synthetic Datasets Overview

Table C.1
Impact of the pre-processing of the number of organisms, chemicals, and relations.

# Organisms # Chemicals # Relations # References
Original dataset 36,803 220,783 533,347 88,810
Pre-processed dataset 14,890 56,310 102,528 32,616

Table C.2
Maximal number N of literature items per kingdoms along with the value and the rank of the
maximal reached entropies on organisms HS(O) and chemicals HS(C).

Kingdom N max HS(O) (rank) max HS(C) (rank)
Archaeplastida 19,491 8.73 (10,512) 9.81 (10,713)
Fungi 5,023 7.18 (2,519) 9.33 (5,023)
Metazoa 1,920 6.72 (1,304) 8.33 (1,920)
Not Attributed (Bacteria or Algae) 6,666 6.96 (2,503) 8.90 (6,666)

Table C.3
Percentage of the maximal (observed) entropies HS(O) and HS(C) at different steps: 250, 500,
1,000, and 2,000 top-ranked articles.

Organisms (% of Max Entropy) Chemicals (% of Max Entropy)

Kingdom n = 250 n = 500 n = 1,000 n = 2,000 n = 250 n = 500 n = 1,000 n = 2,000
Archaeplastida 75.5 80.5 86 91.7 76.9 83.7 89.6 94.3
Fungi 80.7 89 96.6 99.8 83.7 88.1 92.3 95.1
Metazoa 84.4 93 99.5 96.1 90 94.6 97.4 100
Not Attributed (Bacteria or Algae) 82.3 90.7 96.7 99.9 85.1 89.6 93.7 97.2

C.4 Evaluation of Keyword Extraction on the SemEVAL2017 Dataset

The SemEVAL2017 (Augenstein et al. 2017) evaluation dataset consists of 100 para-
graphs, extracted from scientific publications in various domains, with on average 17.23
annotated keyphrases. While 3 sub-tasks are proposed in this challenge (classification
and semantic relations), we only focused on the mention-level keyphrases identifica-
tion. To consider similar settings as used for synthetic abstract generation, we evaluated
the precision in the top-10 extracted keywords. The comparison is done by exact-match
and results are presented in Table C.5. Vicuna-13B largely outperforms the KeyBERT

21 https://www.wikidata.org/wiki/Q27135775.
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Table C.4
Statistics on the content of the created datasets. For Diversity-raw, the top-50 articles per
biological kingdoms (with an available abstract) were reserved for the evaluation set. The
train/valid sets are composed of the remaining items split in 90:10. A similar split was
performed on the initial 5 random samples to obtain the train/valid datasets of equivalent sizes,
referred as the Random-raw datasets. Their count statistics are averaged over the 5 seeds.
Extended-raw is the fusion of the Diversity-raw plus the 5 Random-raw datasets. Full is a
dataset containing all available examples from the LOTUS snapshot, except the 200 used in the
evaluation set. For synthetic datasets, the number of relations, as well as the number of distinct
chemicals, is split between chemical entities and chemical classes.

Dataset Part. # Relations # Organisms # Chemical entities # References(w. chem / w. class) (chem. / class.)

Diversity-raw
train 12,666 2,644 10,311 1,519*
valid 1,425 301 1,211 168*

Random-raw
train 5,102 1,434 4,286 1,531*
valid 657 220 584 189*

Extended-raw
train 27,952 5,642 21,028 7,111*
valid 3,355 932 2,741 790*

Full
train 90,326 13,208 51,658 28,286
valid 1,533 484 1,288 430

Diversity-synt
train 11,547 (10,764 / 783) 2,154 (9,108 / 61) 3,562
valid 1,197 (1,096 / 101) 220 (998 / 37) 389

Random-synt
train 4,825 (4,474 / 351) 1,267 (3,854 / 53 ) 3,798
valid 609 (561 / 47) 190 (507 / 22) 460

Extended-synt
train 28,614 (26,373 / 2,242) 5,258 (20,404 / 69) 23,985
valid 1,444 (1,332 / 112) 432 (1,122 / 37) 1,254

Table C.5
Comparison of the performance of the prompted Vicuna-13B LLM and KeyBERT for
keywords/keyphrases extraction on the SemEVAL2017 test set. The evaluation was only done on
the top-10 extracted keywords for both methods, to use the same configuration as in the
experiments.

TP in Top-10 FP in Top-10 Precision

KeyBERT (all-MiniLM-L6-v2) 96 904 9.6
Vicuna-13B 321 669 32.424

(Grootendorst 2020) baseline and shows more than acceptable performance in zero-
shot settings. KeyBERT was used with standard parameters: keyphrase ngram range:

(1,2), stop words: None, use mmr: True, diversity: 0.7 and BERT model all-
MiniLM-L6-v2 for base embeddings.

990



Delmas et al. Relation Extraction in Underexplored Biomedical Domains

C.5 Tokenized Length of Abstracts

Figure C.2
Differences in size of the tokenized abstracts from the Extended-raw dataset (23,985 abstracts)
between GPT-2 and BioGPT tokenizers. The dedicated tokenizer of BioGPT allows for a more
efficient tokenization of the abstracts.
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Bölling, Sergio Bordel, Arvind K. Chavali,
Paul Dobson, Warwick B. Dunn, Lukas
Endler, David Hala, Michael Hucka,
Duncan Hull, Daniel Jameson, Neema
Jamshidi, Jon J. Jonsson, Nick Juty, Intawat
Nookaew, Nicolas Le Novére, Naglis
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