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Human listeners effortlessly compensate for phonological changes during speech perception,
often unconsciously inferring the intended sounds. For example, listeners infer the underlying
/n/ when hearing an utterance such as “clea[m] pan”, where [m] arises from place assimilation to
the following labial [p]. This article explores how the neural speech recognition model Wav2Vec2
perceives assimilated sounds, and identifies the linguistic knowledge that is implemented by the
model to compensate for assimilation during Automatic Speech Recognition (ASR). Using psy-
cholinguistic stimuli, we systematically analyze how various linguistic context cues influence
compensation patterns in the model’s output. Complementing these behavioral experiments, our
probing experiments indicate that the model shifts its interpretation of assimilated sounds from
their acoustic form to their underlying form in its final layers. Finally, our causal intervention
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experiments suggest that the model relies on minimal phonological context cues to accomplish
this shift. These findings represent a step towards better understanding the similarities and
differences in phonological processing between neural ASR models and humans.

1. Introduction

When listening to spoken language, the human perceptual system is faced with a chal-
lenge: Speech segments can surface in many different ways, depending on factors such
as their phonological context and the unique characteristics of the speaker producing
them. Any speech recognition system must learn to recognize the intended words
regardless of the various ways in which those words may be pronounced.

A substantial amount of the variability in speech is systematic, arising from phono-
logical processes occurring in predictable environments. One such process is place
assimilation, where phonemes adopt the articulation place of adjacent phonemes. For
instance, the word pair clean pan is frequently pronounced as clea[m] pan, with the word-
final coronal /n/ in clean assimilating to the subsequent labial [p] in pan. This is a simple
yet common phonological process across the world’s languages (Hura, Lindblom, and
Diehl 1992). In English, it occurs for coronal segments (e.g., /t/, /d/, /n/) that are
followed by noncoronals, such as labials (e.g., [p], [b], [m]) or velars (e.g., [k], [g], [N]).

Human listeners are able to infer the underlying /n/ when exposed to assimilated
inputs like clea[m] pan, allowing them to perceive the intended word clean. This phe-
nomenon is referred to as compensation for assimilation and happens automatically—
that is, humans compensate without conscious awareness of the assimilation itself.
Psycholinguistic research has used controlled stimuli to investigate the mechanism
behind this process. Several experimental paradigms have been used, including cross-
modal priming (Gaskell and Marslen-Wilson 1996), phoneme monitoring (Weber 2001),
and word detection (Darcy et al. 2009). Results from these studies have led to clear
insights about the linguistic cues that facilitate human assimilation processing.

It is currently an open question how computational models for speech recognition
process assimilated sounds. Traditionally, Automatic Speech Recognition (ASR) systems
accounted for phonological changes using a pronunciation dictionary, which explicitly
stored multiple pronunciations of each lexical item. However, in recent years, the state-
of-the-art has become defined by end-to-end systems based on neural architectures
that are trained in a self-supervised fashion. In learning to map directly from raw
acoustic signals to text transcriptions, such systems must find implicit ways to account
for phonological changes. Given their learning setup, these models are “black boxes”—
hence it remains unclear how exactly they address challenges such as place assimilation.

There is some evidence that self-supervised speech models implicitly encode so-
phisticated linguistic knowledge, including phonological, lexical, and even syntactic
information (Pasad, Chou, and Livescu 2021; Pasad et al. 2023; Shen et al. 2023), but
these findings are predominantly correlation-based and lack a direct connection to
downstream behavior in tasks such as ASR. In contrast, psycholinguistic stimuli are
designed to require a dependence on precise linguistic knowledge to achieve specific
behavioral responses. Insights and materials from psycholinguistic research thus offer
an invaluable resource for systematically analyzing the linguistic knowledge encoded
by self-supervised speech models.

In this study, we draw inspiration from psycholinguistic research to investigate
the extent to which neural ASR models compensate for place assimilation, and which
linguistic cues allow them to do so. We start by analyzing the behavior of such mod-
els when exposed to controlled psycholinguistic stimuli. We then perform a series
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of interpretability experiments to better understand the mechanism behind the ob-
served behavior. Our objective is twofold. Firstly, we aim to assess the extent to which
the output of neural ASR models follows human-like patterns in compensating for
place assimilation. Secondly, we aim to shed light on the specific linguistic knowledge
encoded by neural ASR models and to determine the causal role of that knowledge in
accounting for place assimilation.

2. Related Work

Our study of compensation for assimilation in neural ASR models is grounded in a
large body of work studying the phenomenon in humans through psycholinguistic
experiments and computational modeling. Here, we review theories and experimental
findings regarding the levels of linguistic knowledge involved in compensating for place
assimilation in humans and traditional ASR systems.

We do not review advances in neural speech recognition, nor advances in the
analysis and interpretation of deep learning models. We assume both topics are well-
known in the computational linguistics community; for more background, we refer to Li
(2022) for a survey of recent automatic speech recognition models, to Lyu, Apidianaki,
and Callison-Burch (2024) for a survey of interpretability techniques in NLP, and to
Alishahi, Barking, and Chrupała (2017) and Giulianelli et al. (2018) for early examples
of interpretability combined with speech models or causal interventions, respectively.

2.1 Compensation in Humans

Human speech perception is known to be informed by learned linguistic knowledge
on the level of phonemes and on the level of words. Both levels may influence the
perception of assimilated speech sounds, resulting in the two complementary processes
of phonological and lexical compensation.

Lexical compensation proposes that listeners use a stored list of lexical items to
match the incoming signal against. This mechanism essentially treats place assimi-
lation as random noise and also compensates for irregular changes (i.e., those not
attributable to phonological processes) such as mispronunciations. Lahiri and Marslen-
Wilson (1991) argue that mental representations of lexical items are underspecified; that
is, not all phonetic features of the lexical items are explicitly stored. This underspecifica-
tion allows for a single mental representation to accommodate a range of phonological
variations that speakers may produce in different contexts. An important prediction of
this line of theories is that compensation is independent of phonological context; that
is, listeners should be able to derive the intended word regardless of the phonological
environment in which the change occurs. Higher-order semantic cues may be used to
infer which word is likely in the context.

Phonological compensation (or phonological inference; Gaskell, Hare, and Marslen-
Wilson 1995) proposes that listeners use knowledge of phonological rules to infer the
underlying form of an altered segment. In this line of theories, the same mechanism
that handles regular phonological processes such as elision or insertion is used to
compensate for place assimilation. This mechanism is sensitive to phonological context:
It checks whether the assimilation occurs in a phonologically viable environment, and
uses this information to infer the underlying form. Unlike lexical compensation, it
operates without integrating semantic cues.

Psycholinguistic research supports the idea that human listeners are sensitive to
phonological context when compensating for place assimilation. Gaskell and Marslen-
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Wilson (1996) find that humans tend to perceive assimilated forms such as wicke[b] as
the underlying form wicked if the assimilation is viable within the phonological context.
That is, humans responded faster in a lexical decision task when they heard sequences
like wicke[b] prank as compared to wicke[b] game, because the labial change /d/ →
[b] is only triggered by [p] in prank, not by [g] in game. This finding is robust across
experimental paradigms (Gaskell and Marslen-Wilson 1998) and across languages
(Coenen, Zwitserlood, and Bölte 2001; Mitterer and Blomert 2003; Mitterer, Csépe, and
Blomert 2006; Darcy et al. 2009), providing evidence that compensation for assimilation
in humans cannot be explained by a purely lexical mechanism.

Nevertheless, there is some evidence that humans use semantic context to process
specific cases of assimilation. In English, place assimilation can be complete, leaving no
detectable acoustic traces of the underlying phoneme (Nolan 1992; Ellis and Hardcastle
2002; Dilley and Pitt 2007). When assimilation is incomplete, listeners can leverage
traces of the original phoneme to infer the intended word (Gow Jr 2002). However,
complete place assimilation can lead to lexical ambiguity, exemplified in I think a quick
ru[m] picks you up, where ru[m] could be either the standard pronunciation of rum or
the assimilated form of run. This illustrates the neutralization of a phonemic contrast,
where there is no difference in the surface realization of the phonemes /n/ and /m/.
Gaskell and Marslen-Wilson (2001) find that individuals tend to perceive the surface
form rum in neutral sentential contexts, indicating that acoustic evidence has priority.
However, introducing a biasing sentential context (e.g., “It’s best to start the day with a
burst of activity”) activates both lexical candidates (run and rum), suggesting that human
listeners are helped by semantic cues in resolving the lexical ambiguity that results from
complete place assimilation.

2.2 Compensation in ASR Models

The minimal context cues leading to human-like compensation for assimilation have
also been explored using computational systems. Bing’er et al. (2020) analyze compen-
sation in traditional ASR systems based on Hidden Markov Model-Gaussian Mixture
Models (HMM-GMM). These systems include an acoustic model for mapping acous-
tic features to phone likelihoods and a language model for modeling the statistical
distribution of phone sequences. Bing’er et al. manipulate context-sensitivity in both
the acoustic model (monophone vs. triphone) and the language model (flat, unigram,
bigram, trigram) and use English and French stimuli containing place or voicing assim-
ilation (e.g., clea[m] pan, ro[p] sale). The authors find that human compensation patterns
are best predicted by models using contextually sensitive acoustic models and language
models. These models capture allophony and phonotactics, but do not make use of
higher-level knowledge of a lexicon or word boundaries. This means that these Hidden
Markov Model-Gaussian Mixture Models fit better within phonological compensation
theories than within lexical compensation theories from the literature. However, the
authors solely used stimuli where the assimilation creates a non-word (e.g., cleam,
rop). It could be the case that more challenging cases of assimilation, such as those
leading to lexical ambiguity, require higher-level linguistic knowledge for successful
compensation.

To our knowledge, assimilation processing remains unexplored in end-to-end neu-
ral models for speech recognition. Additionally, no previous work has explored how
such models handle lexical ambiguity resulting from assimilation and the potential
role of semantic cues in resolving such ambiguities. Despite suggestive correlational
evidence that neural ASR models encode several levels of linguistic knowledge, the
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causal effect of such knowledge on the text transcription task still needs to be demon-
strated. Our current study hence investigates the causal mechanism behind a previously
unexplored phenomenon in neural ASR models, providing novel insights on their
internal operations.

3. Computational Behavioral Experiments

Experimental Setup. We leverage stimuli from two psycholinguistic studies (Darcy et al.
2009; Gaskell and Marslen-Wilson 2001), each targeting the influence of specific lin-
guistic cues on humans’ ability to compensate for place assimilation. We specifically
focus on complete assimilation. While such complete assimilatory changes may occur
less frequently in naturalistic speech than incomplete changes, they are more interesting
for our research question: A model must rely on linguistic rather than acoustic cues to
compensate for complete changes (see Section 2.1).

We feed the stimuli to Wav2Vec2 (Baevski et al. 2020), which is a widely used self-
supervised speech model. We use a version of the model that was finetuned for ASR
and analyze compensation patterns in its output transcriptions.

All code is available on our GitHub repository: https://github.com/CharlottePouw
/assimilation.

Model. Wav2Vec2 consists of a block of seven Convolutional Neural Network (CNN)
layers (512 dimensions) and a block of twelve Transformer layers (768 dimensions).
The model was pretrained on unlabeled data from the LibriSpeech corpus (Panayotov
et al. 2015), which contains 960 hours of English read speech from public domain audio
books, sampled at 16 kHz. It takes raw waveforms as input and divides them into
frames corresponding to 25 milliseconds of the speech signal, with a 10-millisecond
overlap between adjacent frames. Wav2Vec2 is pretrained on predicting latent acoustic
information using a contrastive loss function: during pretraining, a random portion
of input frames is masked and the model learns to select the correct quantized audio
representation from a set of distractors.

We use the facebook/wav2vec2-base-960h implementation from HuggingFace
(Wolf et al. 2020), which was finetuned for ASR using 960 hours of labeled data (i.e.,
transcribed speech) from LibriSpeech. During finetuning, the model learns a mapping
between latent frame representations and written characters. Connectionist Temporal
Classification (Graves et al. 2006) is used to decode the predicted sequence of charac-
ters into well-formed transcriptions—this is necessary because the sequence of charac-
ters usually contains duplicates, as most speech sounds span multiple 25–millisecond
frames.

3.1 Experiment 1: Influence of Local Phonological Context

We first quantify the influence of local phonological context cues on Wav2Vec2’s ability
to compensate for assimilation. That is, we analyze if the model has learned that assim-
ilation only occurs in specific phonological environments. We use experimental stimuli
constructed by Darcy et al. (2009). An important choice in the design of these stimuli is
that the assimilated forms are always non-words. This allows us to distinguish between
phonological compensation and lexical compensation. With phonological compen-
sation, the model should compensate more often in viable assimilation contexts (e.g.,
clea[m] pan) compared to unviable ones (e.g., clea[m] spoon). With lexical compensation,
the model can simply recognize that the assimilated form is a non-word (cleam) and
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interpret clea[m] as clean irrespective of the phonological context that follows. In that
case, it should compensate equally often in viable and unviable contexts.

Experimental Design. In the original study, 26 American English listeners aged 18–53
years from the Northeast of the United States participated. These participants heard
an isolated word without any assimilation (e.g., clea[n]), followed by the same word
embedded in a carrier sentence. The carrier sentence was constructed according to one
of the following three conditions—for clarity, we refer to the final consonant of the target
word as “consonant 1,” and the initial consonant of the following word as “consonant 2”:

1. Viable assimilation context: “Please Sarah, can you hand me a clea[m]
pan?” The articulation place of consonant 1 assimilates to the articulation
place of consonant 2.

2. Unviable assimilation context: “Please Sarah, can you hand me a clea[m]
spoon?” The articulation place of consonant 1 changes as in the viable
condition, but not in line with the articulation place of consonant 2 (this
would not occur in natural speech).

3. Control: “Please Sarah, can you hand me a clea[n] fork?” The articulation
place of consonant 1 does not change.

Participants were tasked with identifying whether the isolated target word occurred in
the carrier sentence by pressing a “yes” or “no” button as quickly as possible (a button
press would then initiate the presentation of a new stimulus; the order of the stimuli was
randomized for each participant individually, and they were not allowed to replay stim-
uli). We let Wav2Vec2 generate transcriptions for each condition instead. To evaluate the
model’s ability to compensate for place assimilation in each of the three conditions, we
measure the compensation rate, which is the percentage of transcriptions for which
Wav2Vec2 transcribes the underlying consonant.

The stimuli were recorded by a female native speaker of American English with
an accent corresponding to the General American standard. She was instructed to
deliberately pronounce the assimilated form (e.g., clea[m] in the viable and unviable
condition (leading to a complete place assimilation change), and to pronounce the non-
assimilated form (e.g., clea[n]) in the control condition. The stimuli cover six types of
place assimilation, with multiple target words for each type (e.g., clean, own, lean, thin,
tan for /n/→ [m]). Each target word was combined with a viable, unviable, and control
context word, as explained above. Each resulting word pair was then embedded in three
different carrier sentences. Thus, for each target word, a total of nine sentences was
constructed: 1 target word × 3 context words × 3 carrier sentences. Since there were 16
target words, there were 48 stimuli per condition, and 144 stimuli in total. An overview
of assimilation types and number of target words per type is given in Table 1 and a full
list of stimuli can be found in Appendix B.

Results. Figure 1 shows that Wav2Vec2’s compensation rate is higher in viable contexts
as compared to unviable contexts. This suggests that the local phonological environ-
ment in which the assimilation occurs is indeed an important cue for compensation.
Despite this, the model still demonstrates a 40% compensation rate in unviable assimi-
lation contexts. This suggests that the model also relies on other sources of information
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Table 1
Overview of place assimilation types in the stimuli by Darcy et al. (2009) and the corresponding
number of target words per type.

Manner Place Assimilation Example #Target Words
Nasal Coronal→ Labial /n/→ [m] clea[m] pan 5
Voiced stop /d/→ [b] ba[b] beer 3
Voiceless stop /t/→ [p] fa[p] puppy 2
Nasal Coronal→ Velar /n/→ [N] fu[N] game 3
Voiced stop /d/→ [g] re[g] glasses 1
Voiceless stop /t/→ [k] grea[k] cruise 2

Total 16
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Figure 1
Compensation rate (i.e., the proportion of stimuli for which the underlying consonant is
transcribed) of Wav2Vec2 and humans in viable and unviable assimilation contexts (e.g., clea[m]
pan versus clea[m] spoon, respectively). In the control condition, the target consonant is not
assimilated (e.g., clea[n] fork). N = 48 for each condition. Error bars denote the 95% Wilson
confidence interval.

to compensate even in situations where assimilation is not expected. These sources
of information could be implicitly learned knowledge about valid English words, or
knowledge of probable word pairs.

Interestingly, there are cases where the model fails to transcribe the intended word,
but still produces another valid lexical candidate rather than the literal spelling of a non-
word. For example, for we[p] pants (wet pants), it transcribes we[p] as wept rather than
wep. Similarly, for plai[N] condoes (plain condoes), it transcribes plai[N] as playing rather
than plaing. This hints at a reliance on lexical knowledge: The model seems to infer
that wep and plaing are not valid words, and thus transcribes them as the closest lexical
candidates (which, according to the model, are wept and playing rather than wet and
plain). However, it is also possible that the model interprets these forms as outcomes of
different phonological processes, such as t-lenition (i.e., weakening of [t] in wept, leading
to the pronunciation we[p]) and vowel reduction (i.e., weakening of [I] in playing, leading
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to the pronunciation plai[N]). This would mean that the model is relying on knowl-
edge of various phonological processes beyond place assimilation to process these
particular cases.

It could be the case that the compensation rate is higher in the viable condi-
tion because the specific bigrams in that condition are seen more frequently during
finetuning than those in the unviable condition. To quantify the potential effect of
bigram frequency on compensation rate, we compute the Spearman correlation be-
tween Wav2Vec2’s output probability for the underlying consonant, and the frequency
of the target + context word bigrams in the Librispeech finetuning data.1 There is a
moderate, positive monotonic correlation between these two variables, ρ(76) = .40,
p < .001. Nevertheless, the model often compensates within bigrams that are never
seen during finetuning (see Appendix A for frequencies per bigram). For example, the
bigram mad brother (pronounced with viable assimilation as ma[b] brother) never occurs
in the finetuning data, but is still transcribed as mad brother. Moreover, the bigram great
match (pronounced with unviable assimilation as grea[k] match) frequently occurs in the
finetuning data (43 times), but is still transcribed as greak match. This indicates that
compensation is not solely driven by bigram frequency.

Finally, we observe that the model compensates generally more often than the
human participants in Darcy et al.’s study. This could be a task-specific effect—humans
had to directly compare non-assimilated forms in isolation with assimilated forms in
sentential context, whereas the model had to do a transcription task. Therefore, humans
might have been more sensitive to subtle acoustic differences between the isolated and
embedded word. Another explanation is that humans relied less on lexical knowledge
than the model seems to be doing. We further dissect the role of phonological and lexical
cues in the following section.

3.2 Experiment 2: Isolating Phonological and Lexical Compensation

The results from Experiment 1 indicate that compensation for place assimilation is
sensitive to local phonological cues, but might additionally be guided by other sources
of information, including lexical knowledge and bigram frequency. Knowledge of valid
word candidates and probable word pairs might be used to “override” non-words
with valid words. To isolate phonological compensation from lexical override of non-
words, we conduct a follow-up experiment using stimuli by Gaskell and Marslen-
Wilson (2001). These stimuli again contrast viable and unviable assimilation contexts,
but with the assimilated form being a potential lexical candidate (not a non-word, as in
our previous experiment).

Experimental Design. The original study used a cross-modal priming paradigm in which
83 British English listeners aged 18–45 years participated. They heard sentences in the
following conditions:

1. Viable assimilation context: I think a quick ru[m] picks you up. Here, the
word ru[m] is potentially ambiguous—it can either be the standard
pronunciation of rum, or the assimilated form of run, with the final /n/
assimilated to the following labial [p] in picks.

1 We excluded bigrams containing assimilation from /n/ to [N] from this analysis, because that sound is
transcribed as two separate consonants, <n> and <g>. Thus, the correlation analysis is performed on 39
viable stimuli and 39 unviable stimuli (78 in total).
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2. Unviable assimilation context: I think a quick ru[m] does you good. Here,
the word ru[m] is not ambiguous—it can only be the standard
pronunciation of rum, since the [d] in does does not trigger assimilation
from run to ru[m].

At the offset of the spoken prime word (e.g., ru[m]), a visual word appeared on a
screen in front of the participant for 200 ms, for which they had to make a lexical
decision (they had to press a “yes” or “no” button indicating whether the visual word
was a valid word or not). This visual word would either match the surface form, e.g.,
rum, or the underlying form, e.g., run. Response times for these lexical decisions were
analyzed to determine whether the participants compensated for the assimilation or
not—quicker response times for the underlying form would suggest compensation.
We again measure the compensation rate in Wav2Vec2’s output transcriptions, as in
Experiment 1.

Since the original stimuli by Gaskell and Marslen-Wilson (2001) were not available,
we asked a female native speaker of American English to record them.2 The speaker was
instructed to (1) deliberately pronounce the assimilated form (e.g., rum), (2) to connect
it with the following word (e.g., picks), and (3) to not put any unnatural emphasis on
the crucial word pair. The stimuli were presented one by one on slides and the speaker
recorded them in a quiet booth using a Blue Yeti X microphone. Stimuli were recorded
and saved at 44100 Hz, and downsampled to 16000 Hz by HuggingFace’s preprocessor
before being fed to the model.

We recorded each stimulus item by having the speaker read the sentence containing
assimilation preceded by a biasing context sentence (see Section 3.3). The recording
was split per item and annotated in Praat (Boersma and Weenink 2023). TextGrid
annotations indicated the intervals containing each sentence. The final stimulus audio
files were created with a custom Python script using the TextGridTools (Buschmeier and
Włodarczak 2013) and Parselmouth packages (Jadoul, Thompson, and de Boer 2018).
We ensured that the audio for each stimulus item was equal in length by padding the
sentence audio with background silence (recorded at the same location). As such, each
stimulus audio fed as input to the model was exactly 8 seconds long. For Experiment 2,
we added 150 ms of silence after the viable and unviable target sentences and filled the
remaining duration with silence preceding the start of the sentence.

All stimuli that we recorded, along with the Praat scripts used for editing, are
available on our GitHub repository.

Results. The results are presented in Figure 2 (under “experiment 2”). We observe a
similar pattern as for Experiment 1: The model compensates more often in viable as-
similation contexts as compared to unviable ones. This again suggests that Wav2Vec2’s
compensation mechanism is sensitive to phonological context cues. Nevertheless, the
overall compensation rates of Experiment 2 are much lower than those measured in
Experiment 1. This provides further evidence that the results of Experiment 1 were

2 The fact that the stimuli of Experiments 1 and 2 were recorded by different speakers in different labs may
introduce confounds. To minimize this possibility, we aimed to make our stimuli as comparable as
possible to those from Darcy et al. This involved selecting a speaker of a similar American English accent,
despite the original stimuli from Gaskell and Marslen-Wilson being designed for British English. As such,
we excluded stimuli that did not work as a minimal pair in American English, such as balm/barn.
Additionally, we repeated Experiments 1, 2, and 3 with stimuli pronounced by a different native speaker
of American English (male). The results are highly similar (see Appendix A), which indicates that the
observed compensation behavior in Wav2Vec2 is robust across speakers.
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Figure 2
Compensation rate (i.e., the proportion of stimuli for which the underlying consonant is
transcribed) of Wav2Vec2 in viable and unviable assimilation contexts (e.g., ru[m] picks versus
ru[m] does, respectively), with different types of preceding sentential context (neutral context,
biasing context, and random context). N = 38 for each condition. Error bars denote the 95%
Wilson confidence interval.

additionally guided by the lexical override of non-words—a process that cannot happen
if the assimilated form is a valid lexical candidate. In the latter case, the model can
theoretically compensate based on phonological cues alone, but mostly adopts the
surface interpretation in practice (which explains the relatively small difference between
the viable and unviable condition compared to the difference observed for Experiment 1).

3.3 Experiment 3: Influence of Biasing Sentential Context

Our results thus far indicate that Wav2Vec2 uses the local phonological environment
of the assimilated sound to infer the underlying phoneme. When the assimilated form
is a non-word (as in Experiment 1), there appears to be a strong additional reliance
on lexical knowledge in the compensation process. When the assimilated form is a
competing lexical candidate (as in Experiment 2), Wav2Vec2 mostly does not consider
that assimilation is an option and just transcribes the surface form (given that the
underlying and surface form are equally likely in the semantic context). But what if
the semantic context makes the underlying form more likely?

In our final behavioral experiment, we analyze if biasing sentential context increases
Wav2Vec2’s compensation rate. If the model indeed incorporates semantic context,
it should compensate more often when there is biasing sentential context compared
to neutral or random (non-biasing) context. If Wav2Vec2 simply adopts the surface
interpretation without considering semantic context cues, the model should compensate
equally often in all sentential contexts.

Experimental Design. We constructed the following three experimental conditions using
the stimuli by Gaskell and Marslen-Wilson (2001):

1. Viable assimilation in a neutral context (with preceding silence): [silence]
I think a quick ru[m] picks you up.
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2. Viable assimilation with preceding biasing context: It’s best to start the
day with a burst of activity. I think a quick ru[m] picks you up.

3. Viable assimilation with preceding random context: We were impressed by
her stylish delivery and intonation. I think a quick ru[m] picks you up.

We also constructed these conditions for the unviable stimuli (e.g., It’s best to start the
day with a burst of activity. I think a quick ru[m] does you good). The original study did not
include the random context condition, but we included this as an additional check—
does biasing context influence compensation patterns in any way, and if so, does biasing
context have a different influence than any random context?

The stimuli for Experiment 3 were recorded by the same speaker and constructed
using the same script described for Experiment 2 (see Section 3.2). We again padded
the sentence recordings with background silence to ensure each stimulus item was 8
seconds long. For the stimuli with a preceding (biasing or random) context sentence,
we inserted 250 ms of silence between sentences, 150 ms before and after the sentence
pair, and filled the remaining duration with silence preceding the start of the first
sentence. We used the same context sentence recordings in constructing stimuli for both
the viable and unviable conditions. For the random context condition, target sentences
were randomly paired with a context sentence from another stimulus item, ensuring
that each context sentence was only used once across all random sentence pairs.

Results. Figure 2 shows that Wav2Vec2 compensates equally often in all three sentential
contexts. This indicates that acoustic information has priority, even when semantic
context biases away from the lexical candidate matching the speech waveform.

It could be the case that, even if the surface form ultimately “wins,” the model
still considers the underlying form. We checked for the potential activation of both
lexical candidates in Wav2Vec2 by measuring if the probability for the underlying
phoneme increases in the presence of biasing context. We found no difference between
this probability in the presence of biasing context (M = 0.14, SD = 0.30) and neutral
context (M = 0.17, SD = 0.30). This provides further evidence that the model does not
integrate long-distance semantic context when processing assimilated inputs.

Overall Comparison with Human Behavior. Wav2Vec2’s transcription task differs from
the lexical decision task that humans performed in the original study by Gaskell and
Marslen-Wilson, complicating a direct comparison of results across the two method-
ologies. Nevertheless, there appear to be interesting parallels and differences between
human and model behavior. In Figure 3, we visualize Wav2Vec2’s behavior by its com-
pensation rate in different semantic and phonological contexts (neutral vs. biasing, and
viable vs. unviable), and we visualize human participants’ behavior by their priming
effects in these contexts.

We observe a clear difference in the effect of semantic context on model and human
compensation patterns. Humans clearly compensate more in the presence of biasing
context than in neutral semantic context. The model, however, is not affected by such
semantic context and compensates equally often in neutral and biasing environments.
Phonological context, on the other hand, has a similar effect on model and human
behavior: Both compensate more if the assimilation is viable in the phonological context.

Overall, we can characterize the observed behavior as follows: When the sur-
face and underlying interpretation are equally likely in the semantic context, neither
humans nor the model will “go through the effort” of considering the underlying lexical
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Figure 3
Comparison between compensation behavior of Wav2Vec2 and human participants from
Gaskell and Marslen-Wilson (2001). The left side of the figure shows the effect of semantic
context (neutral vs. biasing) on compensation behavior; the right side of the figure shows the
effect of phonological context (viable vs. unviable).

candidate, even if assimilation could theoretically make that candidate possible (note
the negative priming effects for humans and the low compensation rates for the model
in neutral semantic context). When semantic context biases away from the surface
interpretation, humans will consider both lexical candidates, but they will only choose
the underlying candidate if the assimilation is licensed in the phonological context (note
the priming effect of 20 ms in the viable condition and the priming effect of 0 ms in the
unviable condition). Wav2Vec2, on the other hand, will not consider both candidates
and will stick to the interpretation that most closely follows the speech waveform.

3.4 Discussion

Taken together, our results offer some implications for the theories described in Section 2
in the context of a neural ASR system. Experiment 1 and 2 showed that Wav2Vec2 is
sensitive to phonological context, as compensation rates were higher in phonologically
viable contexts than phonologically unviable contexts. This pattern aligns with human
behavior and corroborates the idea that compensation is not purely driven by lexical
knowledge. Nevertheless, we find a clear asymmetry in compensation patterns for non-
words and real words: The model compensates much more frequently if the assimilation
transforms the lexical item into a non-word (e.g., clea[m]) instead of an alternative lexical
candidate (e.g., ru[m]). A purely phonological compensation mechanism cannot explain
this asymmetry.
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Experiment 3 showed that the introduction of semantic context did not increase
compensation rates of the model, which is not entirely in line with earlier findings
of human participants. This might be caused by Wav2Vec2’s training objective, which
centers around frame-level predictions (i.e., reconstructing masked frames in the pre-
trained version, and predicting frame-level characters in the finetuned version). To
make such predictions, there is often no need to integrate long-distance contextual
information from previous sentences. For this study, we purposefully chose a model
without an explicit language modeling component because we aimed to elicit implicitly
learned linguistic knowledge. Nevertheless, it would be of interest for future work to
conduct comparisons with models featuring an explicit language modeling objective,
since these models may potentially be better at capturing longer-distance semantic
relations between tokens.3

4. Interpretability Experiments

The behavioral experiments described in the previous sections offer valuable insights
into the types of cues that neural ASR systems use in compensating for place assimi-
lation. However, given the inherent challenge of tracing the input–output information
flow in black box neural models, we cannot determine the precise implementation of the
compensation mechanism from behavioral experiments alone. What we can do, though,
is analyze the hidden components of our computational model, using techniques from
interpretability research (Lyu, Apidianaki, and Callison-Burch 2024).

In the remainder of this study, our focus narrows to a more thorough understanding
of the compensation process in cases such as clea[m] pan. Our results suggest that both
phonological cues and lexical knowledge may contribute to compensation in such cases.
We conduct a series of interpretability experiments to better understand this. Firstly,
we localize the layers where compensation seems to occur. Then, we take first steps at
mechanistically understanding how compensation is achieved. This involves analyzing
which context cues causally contribute to the final transcription and identifying which
subregions of the network seem to propagate these cues to the assimilated consonant.

4.1 Localizing Compensation

Methodology. We extract layer-wise frame representations from Wav2Vec2 at the position
of the assimilated consonant. We use the model’s output transcription to find that
position. For example, we extract the frame representation for which the character <n>
was predicted if the model transcribes clean, and the frame representation for which
the character <m> was predicted if the model transcribes cleam.4 We then feed this
representation into a probing classifier that was trained to distinguish between the
(underlying) phonemes /n/ and /m/ using data from an external corpus (TIMIT, see
training details below). We analyze how the probability for the underlying consonant
(/n/ in this case) changes across layers. This process is repeated for all assimilation

3 We conducted an initial exploration regarding the role of explicit language modeling using the
encoder–decoder model Whisper (Radford et al. 2023), in which the decoder performs next-token
prediction. We found that this model generally compensates more often than Wav2Vec2, but is still not
affected by the preceding context.

4 If the model predicted the character for more than one frame, we used the first of those frames as our
probing input. For cases where <ng> was predicted (e.g., fu[N] night→ fu<ng> night), we also used the
first occurrence of <n> as our probing input.
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types listed in Table 1, which means that we train an individual binary probing classifier
for each assimilation type.

We analyze probability patterns for the viable and unviable stimuli separately
and divide them into two categories: compensation and no compensation. This refers to
whether the model compensated for the place assimilation in its final transcription. We
also perform the analysis on the control stimuli.

Probing Classifiers. We train Logistic Regression classifiers to decode phoneme identity
from frame representations extracted from each Transformer layer. We use the TIMIT
Acoustic–Phonological Continuous Speech Corpus (Garofolo et al. 1993), which con-
tains sentence recordings of 630 speakers of eight major American English dialects. Each
speaker read aloud the same ten sentences, which were designed to elicit a wide variety
of (dialect-specific) speech sounds. The corpus includes time-aligned transcriptions of
phonemes and words, as well as the raw waveform for each spoken sentence, sampled
at a rate of 16 kHz.

To generate the training and evaluation data, we pass 1,000 utterances from the
TIMIT train split and 200 utterances from the TIMIT test split through Wav2Vec2 and
label the corresponding frame representations using the phoneme timestamps in TIMIT.
We do this in a maximalist fashion: All frames in which (part of) a phoneme occurs are
labeled with that phoneme. Each probing classifier is trained on representations from a
single Wav2Vec2 layer, and only has to distinguish between two phoneme labels (i.e.,
the underlying and surface consonant involved in the assimilation process). To make
sure that the train and test data for each probing classifier is balanced, we downsample
the majority phoneme class to match the number of samples in the minority phoneme
class (see Table 2). All probing models reach high accuracy, especially when trained on
middle to final layers (see Figure 4).

Results. Figure 5 shows the layer-wise probability patterns for the nasals. The results of
the stops are comparable and are shown in Appendix C. We observe distinct layer-wise
patterns depending on the compensation behavior in the model’s final transcription.
When the model fails to compensate in its transcription (orange), it seems to interpret
the assimilated sound as the surface form [m] or [N] across all layers. When the model
succeeds in compensating (blue), however, the model seems to first interpret the as-
similated sound as the surface form [m] or [N] , but later shifts its interpretation to the
underlying form /n/. In the control condition (green), when the input consonant is not

Table 2
Number of train and test frames for each binary probing classifier after downsampling the
majority phoneme class to the minority phoneme class. Frames are obtained by running
utterances from the TIMIT corpus through Wav2Vec2.

Phoneme Contrast #Train Frames per Class #Test Frames per Class
/n/ vs /m/ 3,325 773
/n/ vs /N/ 1,157 197
/d/ vs /b/ 865 204
/d/ vs /g/ 1,116 220
/t/ vs /p/ 1,688 356
/t/ vs /k/ 3,165 622
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Figure 4
Accuracy of binary probing classifiers, trained and evaluated on frame-level representations
from individual Wav2Vec2 layers (extracted using the TIMIT corpus). Each classifier has to
distinguish between two candidate phoneme labels (indicated in the legend).

assimilated and thus pronounced as [n], the model interprets the sound as /n/ across
all layers.5

The blue pattern suggests a distinct functionality of the model’s layers. Early to
middle layers seem to be identifying the surface phones that are pronounced (this
identification is not completely accurate yet in the first two layers, in line with the
layer-wise accuracies depicted in Figure 4 and corresponding to the findings of Pasad,
Chou, and Livescu (2021), who show that Wav2Vec2’s middle layers correlate strongly
with phone identity). Later layers seem to have incorporated contextual information, so
that the model can infer the phonemes underlying the surface sounds. In the following
section, we try to trace how the model collects relevant context cues to achieve the shift
from surface to underlying interpretation in its final layers.

4.2 Tracing the Compensation Mechanism using Causal Interventions

In our final set of experiments, we explore whether the behavior compensation for place
assimilation can be traced back to specific subregions of Wav2Vec2. We analyze the causal
contribution of specific context cues to the final character prediction at the position of
the assimilated consonant. Moreover, we analyze which model components in which
layers are involved in propagating these cues to the target position.

Causal Interchange Interventions. We perform causal interchange interventions within
the 12 Transformer layers of Wav2Vec2, each containing 12 attention heads and a Multi-

5 We repeated the probing experiments with the pretrained version of Wav2Vec2,
facebook/wav2vec2-base, and observed similar probability patterns as for the finetuned model. The
only exception were the probabilities in the final layers, which showed a converging instead of diverging
pattern across conditions. This can potentially be explained by the different model objectives: While the
finetuned model has to actively distinguish between different characters, the pretrained model has an
autoencoder-style objective of closely reconstructing masked input frames (Pasad, Chou, and Livescu
2021).
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Figure 5
Layerwise preference of binary linear probing classifiers for the underlying consonant /n/ or the
surface consonant (top: /m/, bottom: /N/) given Wav2Vec2 representations at the position of
the assimilated consonant. The three line colors indicate whether the model compensated for the
assimilation in its final transcription. Error bars denote the standard error of the mean.

Layer Perceptron (MLP). These model components can be thought of as “information
movers,” which read from and write to the residual stream of individual frames (Wang
et al. 2022). In text-based language models, causal interventions have been used to
identify subgraphs of model components (referred to as circuits) responsible for greater-
than reasoning (Hanna, Liu, and Variengien 2024), pronoun resolution in Winograd
sentences (Yamakoshi et al. 2023), and gender bias (Vig et al. 2020; Chintam et al. 2023).
Here, we apply causal interventions to identify similar potential subgraphs underlying
Wav2Vec2’s compensation behavior.

Methodology. We start by identifying a pair of viable and unviable stimuli from Exper-
iment 1 for which the model showed the desired output behavior; that is, it should
transcribe the underlying consonant in the viable condition, and the surface consonant
in the unviable condition. An example of such a pair is thi[m] packet and thi[m] leaflet,
for which the model transcribed thin packet and thim leaflet.

A schematic overview of the intervention procedure is depicted in Figure 6. We
run the model on both inputs, which we will henceforth refer to as the viable run
(shown in the middle in green) and the unviable run (shown on the left in blue). During
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Figure 6
Causal interventions were performed at the critical frame, critical phone, and whole word level
(indicated in dark-to-light shading in the audio signal), and for several different components
within individual Transformer layers (outputs of attention heads and MLPs, indicated in dashed
frames). Here we visualize the replacement of an MLP output of the unviable run with an MLP
output from the viable run, for the critical frame of the context word leaflet/packet only.

both runs, we extract the output of all individual attention heads and MLPs across all
frames. Next, we repeat the unviable run, but this time, we replace the output of a
specific head or MLP with the output that was generated by that component during the
viable run (shown on the right in blue and green). After each interchange intervention,
we analyze if the probability of the critical frame changed (i.e., the frame for which
<m> was predicted). We are particularly interested in interventions that are able to flip
the prediction from <m> to <n>, as these should reveal the crucial model components
responsible in compensating for assimilated phonemes.

The importance of individual attention heads can be broken down into the im-
portance of its subcomponents (keys, queries, values). The full head output vector is
essentially a summary of relevant context cues from various positions. By measuring the
effect of replacing this output vector, we assess how much relevant context information
is introduced into the residual stream by that head at that layer as a whole. Then, to get
a more fine-grained picture of the specific contextual cues that are propagated by that
head, we intervene on the value vector of that head at various frame positions.

To quantify the importance of different types of context cues (phonological and/or
lexical), we perform the interventions at six different positions. To illustrate these po-
sitions, we showcase Wav2Vec2’s transcription for the unviable input thi[m] leaflet and
the viable input thi[m] packet in Figure 7. For both the assimilated word and the context
word, we replace the activations at the position of the critical frame, critical phone (the
critical frame plus the three frames preceding and following it), and the whole word.
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Predicted characters for the unviable input thi[m] leaflet and the viable input thi[m] packet. The
critical frames for which we replace head or MLP activations are marked.
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Figure 8
Probability difference between the underlying consonant label <n> and the surface consonant
label <m> after replacing individual head or MLP outputs at different positions (titles indicate
the intervention position). We swap in the activations corresponding to the viable utterance
thi[m] packet while running the finetuned Wav2Vec2 model on the unviable utterance thi[m]
leaflet. If the probability difference is positive (red), the model’s transcription is flipped from thim
to thin.

Results. In Figure 8, we showcase the impact of replacing individual head and MLP
outputs from the unviable run (thi[m] leaflet) with those from the viable run (thi[m]
packet). The positions at which we replace activations are denoted by the titles of each
heatmap.

We observe a drastic increase in the probability for the underlying consonant <n>
when intervening on early MLP outputs (layers 1–5) at the context word position
leaflet/packet. This effect is absent when intervening solely on the critical context frame
(i.e., the single frame for which <l> or <p> was transcribed, as seen in Figure 7). Instead,
the effect becomes evident when intervening on all frames spanning the critical context
phone [l]/[p]. Notably, the effect does not become stronger when intervening on the
entire context word leaflet/packet. This suggests that the context phone serves as the
“determining” cue that leads the model to transcribe <n> rather than <m>. Early MLPs
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apparently write this cue to the residual stream of the critical target frame (i.e., the frame
for which <m> or <n> is transcribed, as seen in Figure 7).

This observation may also clarify why intervening on later MLPs (in layers 6–
12) is effective only within the assimilated word thi[m], not within the context word
leaflet/packet. By that point, the relevant context cue has already been embedded in the
residual stream of assimilated frames. Consequently, in later layers, the probability
can only be shifted from <m> to <n> by directly modifying activations within the
assimilated word thi[m]. This would also explain the observed shift from surface to
underlying interpretation in the model’s final layers, as classified by probing models
(see Figure 5).

Shifting our focus to the attention heads in Figure 8, we notice that replacing
the outputs of two specific heads (i.e., head 3 in layer 4 and head 2 in layer 5) can
switch the prediction from <m> to <n>. This effect is observable only when swapping
those outputs at the assimilated word position thi[m], not the context word position
leaflet/packet—which seems to be the opposite behavior of the early MLPs.

Recall that an attention head’s output essentially serves as a summary of relevant
context cues from various positions. It is plausible that head 3 in layer 4 and head 2
in layer 5 have a large effect on the probability because they predominantly gather
information from the critical context phone [l]/[p] in leaflet/packet. To validate this, we
intervene on the value vectors of relevant context frames, as shown in Figure 9. Notably,
these value vector interventions yield a similar effect as head output interventions at
the assimilated word. This suggests that head 3 in layer 4 and head 2 in layer 5 write
information about the critical context phone into the residual stream of the assimilated
word thi[m].

Similar to our findings for the MLPs, intervening on the value vectors of the
critical context phone [l]/[p] has a similar effect as intervening on the value vectors
of the entire context word leaflet/packet (compare the middle and right heatmap in
Figure 9). This implies that phonological cues trigger compensation for assimilation in
this specific example.
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Figure 9
Probability difference between the underlying consonant label <n> and the surface consonant
label <m> after swapping the value vectors of individual heads at different positions (titles
indicate the intervention position). We swap in the activations corresponding to the viable
utterance thi[m] packet while running the finetuned Wav2Vec2 model on the unviable utterance
thi[m] leaflet. If the probability difference is positive (red), the model’s transcription is flipped
from thim to thin.
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We conducted the same analysis for several other examples and observed that the
pattern of the MLPs remain consistent: Intervening on the critical context phone is
effective for early MLPs, while intervening on the assimilated consonant is effective for
later MLPs. The patterns observed in the attention heads, however, exhibit more vari-
ability across examples. Further research and, ideally, the development of an automatic
algorithm for determining important model components are required to ascertain if
compensation for place assimilation can be traced back to a unified circuit. Additionally,
quantifying the interactions between components is desirable, as our current approach
only evaluates the importance of model components individually.

5. Conclusion and Discussion

In this study, we have conducted a systematic analysis of the mechanism used by
Wav2Vec2 to address place assimilation. Through computational behavioral experi-
ments, we have identified the specific linguistic environments in which the model
compensates, and we observed interesting parallels and differences with human com-
pensation patterns. We found that, like humans, the model is sensitive to the local
phonological context in which the assimilation occurs, and rarely compensates when the
phonological context does not license assimilation. The model’s compensation patterns
seem to be further guided by lexical knowledge, but the model does not integrate se-
mantic context. Through probing experiments and causal interventions, we pinpointed
the model components in which compensation occurs, and demonstrated the causal role
of phonological cues in the compensation process.

We observed that context cues that are as minimal as a single phone can have a
drastic effect on the output of a neural ASR model. This sparks curiosity about the role
of such minimal cues in human assimilation processing. Mitterer and Blomert (2003)
studied the timecourse of compensation for assimilation by exposing Dutch participants
to compound words containing viable assimilation (e.g., tui[m]bank, “garde[m] bench”)
and unviable assimilation (e.g., tui[m]stoel, “garde[m] chair”). Analyzing participants’
EEG signals, they found a mismatch negativity at the onset of the context word, indi-
cating that participants perceived [m] differently as a result of the following phone,
which either licensed assimilation ([b]) or not ([s]). It would also be interesting to
present human subjects with increasing amounts of material from the context word (i.e.,
garde[m] b..., garde[m] be..., and so on), instead of presenting them with the full word
pair garde[m] bench. This approach could deepen our understanding of the timecourse
at which compensation occurs in humans.

In future work, we aim to explore the extent to which the current findings generalize
to other phonological processes. While the focus of this article on place assimilation
was relatively narrow, we found some hints that the model may have knowledge
about other phonological phenomena such as t-lenition and vowel reduction. Further
experimentation is needed to validate this observation.

Additionally, a better replication of the original human experiments is desirable.
Instead of analyzing compensation patterns in the output transcriptions of ASR models,
one could train a probing model to detect the presence of a word in an assimilated se-
quence (e.g., the presence of the word clean in the viable sequence clea[m] pan versus the
unviable sequence clea[m] spoon). This setup would also allow us to probe compensation
patterns in models that are entirely self-supervised and have never seen text, which are
potentially more cognitively plausible than the ASR models that were used in this study.
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Appendix A. Compensation Patterns for a Different Speaker

Results for Experiments 1, 2, and 3, but with stimuli pronounced by a different Ameri-
can English speaker (male).
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Figure A.1
Compensation rate (i.e., the proportion of stimuli for which the underlying consonant is
transcribed) of Wav2Vec2 and humans in viable and unviable assimilation contexts (e.g., clea[m]
pan versus clea[m] spoon, respectively). In the control condition, the target consonant is not
assimilated (e.g., clea[n] fork). N = 48 for each condition. Error bars denote the 95% Wilson
confidence interval.
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Figure A.2
Compensation rate (i.e., the proportion of stimuli for which the underlying consonant is
transcribed) of Wav2Vec2 in viable and unviable assimilation contexts (e.g., ru[m] picks versus
ru[m] does, respectively), with different types of preceding sentential context (neutral context,
biasing context, and random context). N = 38 for each condition. Error bars denote the 95%
Wilson confidence interval.
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Appendix B. Frequency of Word Pairs in Finetuning Data

Table B.1
Transcriptions for stimuli by Darcy et al. (2009), along with bigram frequency in the LibriSpeech
finetuning data. Strict refers to a strict regular expression match (i.e., the exact bigram occurs in
the training data), loose refers to a loose regular expression match (i.e., a close match of the word
pair occurs in the training data, e.g., own planning instead of own plan).
Input Transcription Frequency

Carrier 1 Carrier 2 Carrier 3 Strict Loose
clea[m] pan clean pan clean pan clean pan 0 1
clea[m] spoon clean spoon clean spoon clean spoon 0 1
clea[n] fork clean fork clean fork clean fork 0 0
ow[m] plan own plan own plan own plan 31 183
ow[m] choice own choice own choice own choice 160 162
ow[n] life own life own life own life 1,025 1,121
ta[m] belt tam belt tam belt tam belt 0 0
ta[m] shirt tam’s shirt tam shirt tamd shirt 2 2
ta[n] scarf tan scarf tan scarf tan scarf 0 0
lea[m] back lean back lean back lean back 52 57
lea[m] shape leam shape leams shape leam shape 0 1
lea[n] line lean line lean line lean line 1 84
thi[m] packet thin packet thin packet thim packet 3 3
thi[m] leaflet thim leaflet thin leaf let then leaflet 0 0
thin notebook thin notebook thin notebook the notebook 1 1
grea[k] cruise great cruise great cruise great cruise 0 1
grea[k] match greak match great match greak match 40 43
grea[t] fight great fight great fight great fight 80 115
swee[k] cocktail sweet cocktail sweet cocktail sweet cocktail 2 2
swee[k] liquor sweek liquor sweek liquor sweet liquor 0 0
swee[t] chocolate sweet chocolate sweet chocolate sweet chocolate 2 3
fa[p] puppy fat puppy fat puppy fat puppy 1 1
fa[p] squirrel fap squirrel fat squirrel fat squirrels 1 1
fa[t] monkey fat monkey fat monkey fat monkey 1 1
we[p] pants wet pants wept pants wet pants 0 0
we[p] socks wept socks wet socks wet socks 1 1
we[t] shoes wet shoes wet shoes wet shoes 11 11
gree[ng] cup green cup green cup green cup 0 5
gree[ng] chair green chair green chair green chair 5 7
gree[n] vase green vase green vase green vase 3 4
plai[ng] condoes playing condoes playing condoes playing condoes 0 0
plai[ng] churches playing churches playing churches playing churches 0 0
plai[n] chapels plain chapels plain chapels plain chapels 0 0
fu[ng] game fung game fun game fun game 0 0
fu[ng] night fung night fung night fung night 0 0
fu[n] day fun day fun day fun day 0 0
ma[b] brother mad brother mad brother mad brother 0 0
ma[b] daughter mapp daughter mab daughter mab daughter 0 0
ma[d] mother mad mother mad mother mad mother 0 0
sa[b] ballet sab balet sab balet sab ballet 0 0
sa[b] novel sab novel abnovel sab novel 0 0
sa[d] movie sad movi sad movie sad movy 0 0
ba[b] beer bad beer bad beer bad beer 11 11
ba[b] lunch bab lunch bad lunch bad lunch 0 0
ba[d] dish bad dish bad dish bad dish 0 1
re[g] glasses red glasses red glasses red glasses 0 12
re[g] lipstick reg lip stickas reg lipstick reglip stic 0 0
re[d] necklace red necklace red necklace read necklace 0 2
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Appendix C. Stimuli for Experiments 2 and 3

1. cod/cob The chef swiftly removed the head and tail, then checked the
diners’ order. They asked for the cob [poached/too late].

2. bride/bribe The ceremony was held in June and the sunny weather
added to the air of celebration. An article about the bribe [made the local
paper/turned up in the local paper].

3. lead/leg The council was worried about the effects on health of the old
water pipes. They got the leg [covered immediately/tested immediately].

4. fad/fag Fashions are OK, but they can be dangerous. That new fag
[causes cancer/tends to cause cancer].

5. thud/thug We woke up with a start from a deep sleep. A terrible thug
[caught us by surprise/took us by surprise].

6. mud/mug The conditions in the outback were difficult for driving. In the
intense heat, the mug [cracked up completely/turned to dust].

7. road/rogue Kate was a bit worried about the route she was taking. After
a few miles, the rogue [cut across the desert/turned North across the
desert].

8. phone/foam The head office of the telecommunications company was
empty. The manager was at the foam [packaging
department/distributors].

9. scene/seam We were impressed by her stylish delivery and intonation.
Jane finished off the seam [beautifully/deftly].

10. bean/beam She was learning about planting her allotment the hard way.
Mary threw the beam [promptly on the ground/dutifully on the ground].

11. worn/warm The hotel room was surprisingly shabby and the bedclothes
had seen better days. It was a rather warm [blanket/duvet].

12. run/rum It’s best to start the day with a burst of activity. I think a quick
rum [picks you up/does you good].

13. cone/comb His daughter had thrown the building blocks all over the
place. Harry found the comb [pretty quickly/down on the floor].

14. turn/term Pete was listening to the radio on the way home. Because he
wasn’t concentrating, the term [passed him by completely/took him by
surprise].

15. Dane/Dame The debate on bacon prices drew representatives from all
over Northern Europe. After the speech, the Dame [planned to
leave/decided to leave].

16. cat/cap It would normally turn up at feeding time, rubbing her ankles
and looking hungry. Julie saw the cap [by the front door/next to the
post-box].

17. heat/heap The oven was switched on just before dinnertime. Nick started
to heap [bowls on the stove/dinner plates on the stove].
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18. mat/map He was irritated by the newly uncovered dust in the doorway.
Stephen put the map [back where he found it/down for a moment].

19. sit/sip The children were guided to the desks in front of the blackboard.
They had to sip [meekly while the party carried on/daintily while the
party carried on].

20. wit/whip His arguments were always elegant and entertaining. Michael
used his whip [brilliantly/discerningly].

21. grit/grip County councils have improved their safety measures for
winter road conditions when bad weather is forecast. They appear to
grip [motorways much better/newer roads much better].

22. sleet/sleep The conditions had worsened considerably while he stood
queuing outside the football ground. Four hours of intermittent sleep
[brought out the worst in Mark/destroyed Mark’s good humor].

23. port/pork They were obviously in the mood to get drunk. The customers
had most of the pork [guzzled early on/demolished early on].

24. bait/bake The competition on the banks of the river was well attended.
The new fish bake [got tested yesterday/didn’t work very well].

25. late/lake Nothing had happened for quite a while, then right at the end
there was a flurry of activity. The council found the lake [growth
surprising/display interesting].

26. dart/dark Sarah folded the sheet of paper carefully and aimed it at the
waste-bin. The dark [gradually fell/descended slowly].

27. bite/bike The apple looked so appealing that he couldn’t help himself.
Paul took a bike [guiltily/deliberately].

28. net/neck Philip’s nephew was trying to catch shrimps in a rockpool. The
little boy’s neck [got cut by the blade/nearly got cut by the blade].

29. wait/wake Ben usually went straight to the bus stop after a late shift at
work. He would wake [grumpily at ten o’-clock/daily at ten o’clock].

30. rat/rack It’s eyes were barely visible beneath the layers of dirt. The filth
from the ancient house left the rack [grimy/dirty].

31. line/lime Lee preferred very abstract designs for his clothes. The T-shirt
had a lime [print on it/drawing on it].

32. right/ripe With such a vast array of delicious fruit to choose from, they
were spoilt for choice. They picked the ripe [berries for the
pie/nectarines for the punch].

33. fort/fork You have to climb up the ridge until you enter a large archway.
When you reach the fork [go left/don’t turn left].

34. bud/bug Patrick did everything he could to nurture his garden, but the
late frost had taken its toll. When he sprayed it, the bug [curled up and
died/twisted slightly].
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35. lead/league Second place was all they could hope to achieve. Their final
game was against the league [cricket team/tennis team]

36. gun/gum There are many theories about the increase in serious crime.
The role of the gum [peddlers has never been in doubt/dealers has never
been in doubt].

37. beat/beak Many rock songs vary enormously during a performance.
Nonetheless, the beak [goes on throughout/tends to keep the tune
together].

38. oat/oak The traditional Scottish breakfast is often unfairly criticized.
There’s no doubt that the oak [gives you vital vitamins and
minerals/tastes good when it’s served properly].
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Appendix D. Probing Results for Stops
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Figure D.1
Layerwise preference of linear probing classifiers for the underlying consonant versus the
surface consonant given Wav2Vec2 representations at the position of the assimilated consonant.
The three line colors indicate whether the model compensated for the assimilation in its final
transcription. If one of the lines is missing, that means that the model did not show that behavior
for that particular condition. Error bars denote the standard error.
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