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Speech learning encompasses mastering a complex motor system to produce speech sounds
from articulatory gestures while simultaneously uncovering discrete units that provide entry
to the linguistic system. Remarkably, children acquire these associations between speech sounds,
articulatory gestures, and linguistic units in a weakly supervised manner, without the need for
explicit labeling of auditory inputs or access to target articulatory gestures. This study uses self-
supervised deep learning to investigate the respective roles of sounds, gestures, and linguistic
units in speech acquisition and control. In a first experiment, we analyzed the quantized
representations learned by vector-quantized variational autoencoders (VQ-VAE) from ground
truth acoustic and articulatory data using ABX tests. We show an interesting complementarity
between acoustic and articulatory modalities that may help in the discovery of phonemes. In
a second experiment, we introduce a computational agent that repeats auditory speech inputs
by controlling a virtual vocal apparatus. This agent integrates an articulatory synthesizer
capable of reproducing diverse speech stimuli from interpretable parameters, along with two in-
ternal models implementing the articulatory-to-acoustic (forward) and acoustic-to-articulatory
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(inverse) mapping, respectively. Additionally, two inductive biases are used to regularize the
ill-posed acoustic-to-articulatory inverse mapping. In line with the first experiment, we explore
the complementarity between the auditory input and the articulatory parameters inferred by the
agent. We also evaluate the impact of discretizing auditory inputs using VQ-VAE. While the
majority of the agent’s productions are intelligible (according to perceptual evaluations), our
analysis highlights inconsistencies in the underlying articulatory trajectories. In particular, we
show that the agent’s productions only partially reproduce the complementarity between the
auditory and articulatory modalities observed in humans.

1. Introduction

Learning to speak involves the acquisition of a complex set of relationships between
articulatory gestures, sounds, and meaning. Gestures are the proximal variables under
the speaker’s control to generate a message conveyed by a linguistic sequence; sounds
are the distal physical output of these gestures, which are captured by the listener’s
ear and processed by the listener’s brain to recover the speaker’s message eventually.
The interaction between the auditory and motor systems has been at the center of
long debates in theories of speech perception. These debates contrast proponents of
auditory theories (Diehl, Lotto, and Holt 2004; Kluender 1994), for whom listeners ex-
tract acoustic features by comparing them to stored acoustic templates, and proponents
of articulatory/motor theories (Liberman et al. 1967; Liberman and Mattingly 1985),
for whom perceiving speech is perceiving “gestures,” that is, extracting articulatory
information from the acoustic signal. Supported by neurocognitive findings on the
relationships between perceptual and motor components, recent studies propose uni-
fying auditory and motor theories into a perceptuo-motor framework in which speech
sounds and inferred articulatory gestures are combined in the brain to access linguistic
content (Bever and Poeppel 2010; Schwartz et al. 2012; Skipper et al. 2007). This inter-
play between sounds and gestures is also central in the literature on speech production
and speech motor control through the concept of internal models (Kawato 1999; Parrell
et al. 2019; Houde and Nagarajan 2011; Perrier 2012), which are supposed to be the
neurocognitive means enabling prediction of the relation between a sensory input and
the underlying motor commands.

An essential aspect of the debates on the use of articulatory information in speech
representation learning concerns the existence of invariant features and phoneme cat-
egories. Auditory theories propose various types of invariant auditory features (e.g.,
Stevens 1989), while motor theories assume that invariance cannot be found in the
acoustic signal alone due to coarticulation but should instead be found in the inferred
articulatory gestures. Still, the existence of invariant features, whatever they are, is itself
questionable. As Lindblom suggested in his H&H theory (Lindblom 1990), a phoneme
could be defined by domains of acceptable acoustic cues rather than strict invariance.
Moreover, the existence of phonemes itself can also be questioned. Considering the
lack of clearly distinctive acoustic cues, several authors (e.g., Port and Leary 2005;
Bybee 1999) attempt to replace formal phonology with emergent phonetic structures.
Here, access to meaning could occur from a combination of phonetic cues, language
experience, and contextual information, without requiring phonemes at all in the speech
communication process.

These questions on the nature of phonetic representations in relation with the
respective roles of articulatory and acoustic information have been largely studied
using behavioral and neuroimagery experiments. In the present study, we adopt a
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complementary approach based on modeling by studying how a computational agent
can learn these relationships from its environment. This allows us to quantitatively
analyze the informational content of articulatory gestures and sounds in relation to
discrete phonetic categories and to gain new insights into how infants might acquire
these relationships.

Recently, large-scale deep learning simulations have been used to design compu-
tational models of infant language development (Cruz Blandón, Cristia, and Räsänen
2023). As proposed in Dupoux (2018), a deep neural network fed with a large amount
of raw and unlabeled data can be used to “reverse-engineer” speech acquisition in
humans. For instance, the developmental trajectories of infants can be approximated
by monitoring the evolution of the model’s performance with respect to the amount of
training data. This paradigm was used recently in Lavechin et al. (2024) to study the
perceptual narrowing effect and in Schatz et al. (2021) to study the nature of the discrete
units potentially learned by infants at the early stages of their development (which were
found to be much shorter and fine-grained than phonemes).

In line with this literature, several studies explicitly considered the role of artic-
ulatory information (e.g., Bailly 1997; Kröger, Kannampuzha, and Neuschaefer-Rube
2009; Kröger, Kannampuzha, and Kaufmann 2014; Howard and Messum 2014; Rasilo
and Räsänen 2017; Moulin-Frier, Nguyen, and Oudeyer 2014; Philippsen, Reinhart, and
Wrede 2014; Philippsen 2021; Patri, Diard, and Perrier 2015; Laurent et al. 2017; Chen,
Lammert, and Parrell 2021; Georges et al. 2022; Beguš et al. 2023; Coen 2006; Murakami
et al. 2015; Krug et al. 2023a, b; Guenther 1995). In most of them, a computational
agent learns to control an artificial vocal tract (often implemented as an articulatory
synthesizer) to reach an acoustic target. Similar to children learning speech, the agent
does not know the articulatory configuration associated with this acoustic target. Using
a trial-and-error procedure, it has to learn the ill-posed acoustic-to-articulatory inverse
mapping (Atal et al. 1978) in a self-supervised manner (some studies investigated the
contribution of the visual modality, i.e., the vision of the interlocutor’s lips, as an
additional supervision signal, e.g., Bailly 1997; Murakami et al. 2015; Krug et al. 2023b).
A first set of promising results has been reported in the literature with acoustic tar-
gets provided by synthetic data generated by an articulatory synthesizer (e.g., Kröger,
Kannampuzha, and Neuschaefer-Rube 2009; Chen, Lammert, and Parrell 2021;
Philippsen, Reinhart, and Wrede 2014; Philippsen 2021; Moulin-Frier, Nguyen, and
Oudeyer 2014; Laurent et al. 2017; Patri, Diard, and Perrier 2015; Murakami et al.
2015; Krug et al. 2023b). In other studies, the acoustic target is given by natural speech
recordings, which can be made of isolated vowels (Coen 2006; Rasilo and Räsänen 2017),
vowel-consonant-vowel (VCV) sequences (Bailly 1997), or more complex material such
as isolated words and full sentences (Krug et al. 2023a; Beguš et al. 2023; Georges et al.
2022).

Crucially, most of these studies do not generally consider the joint learning of the
acoustic-to-articulatory mapping on the one hand and of discrete units on the other.
Indeed, in some studies, the learning-by-imitation process does not involve any explicit
decoding of discrete units (e.g., Beguš et al. 2023; Georges et al. 2022) whereas in others,
these units, defined as phonemes, are given to the agent (either as part of the objective
function to optimize [Krug et al. 2023b] or as an additional input [Krug et al. 2023a]).
To the best of our knowledge, only a few computational models of speech learning
address the joint learning problem (Howard and Messum 2014; Rasilo and Räsänen
2017; Philippsen 2021). However, the proposed simulations do not explicitly target the
question of the discovery of phonetic units in relation with the respective (and poten-
tially complementary) roles of the acoustic and articulatory modalities, which is the
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main goal of the present study. Here, by means of computational modeling and
simulation from natural speech data, we investigate (1) to what extent the use of ar-
ticulatory information can contribute to the discrimination of phonemic categories, and
(2) how a computational agent can retrieve such articulatory information from audio-
only speech inputs.

To address these complementary research questions, we propose the two follow-
ing experiments. In the first one, described in Section 2, vector-quantized variational
autoencoders (VQ-VAE; Van Den Oord, Vinyals et al. 2017) learn quantized represen-
tations either from ground truth articulatory data or from their acoustic counterparts.
By extending the ABX methodology (Schatz et al. 2013), we show an interesting comple-
mentarity between the representations learned from the acoustic data and those learned
from the articulatory data, the former being rather related to the consonant manner of
articulation, the latter to the place of articulation. We also show that the discrete units
learned from the articulatory data are significantly longer than the ones learned from
the acoustic data. Still, both are much shorter than typical phones.

In a second series of experiments, reported in Section 3, we investigate how a
child can learn the acoustic-to-articulatory mapping in a self-supervised manner. To
that purpose, we develop a computational agent based on deep neural networks that
learns to speak by controlling its artificial vocal apparatus to imitate any acoustic input.
The proposed agent combines (i) a pre-trained neural articulatory synthesizer able
to reproduce complex speech stimuli from a limited set of interpretable articulatory
parameters, and (ii) a forward and an inverse internal model representing how the
acoustic-articulatory relationships are internalized in the brain. We contrast two ver-
sions of the agent, the first one called the “continuous” agent comprising only these two
sets of components, and the second one called the “discrete” version, also comprising
an additional unit discovery module based on VQ-VAE, similar to that used in the
first series of experiments. The speech unit discovery module and the two internal
models (forward and inverse) are jointly trained in a self-supervised manner from raw
acoustic-only speech data. We also investigated two mechanisms, referred to here as
inductive biases, to constrain the inverse model. The first aims to maintain plausible
articulatory configurations (independently from any acoustic input), and the second
encourages the articulatory gestures to be smooth over time by minimizing their jerk.
The evaluation uses the same ABX methodology as for ground truth data and includes
a perceptual evaluation of the agent’s productions. This evaluation enables us to assess
the gap between the agent and human articulatory capabilities, providing interesting
perspectives for further developments. We finally discuss in Section 4 these simulation
results in relation with the literature on acoustic vs. articulatory invariance and on the
development of speech production, and present some major open questions.

All the corresponding source code, including the specification of the articulatory
synthesizer, and the complete agent, is made available for further experiments.1

2. Experiment 1: Role of Articulatory Features in Learning Phonetic Units

Using self-supervised learning algorithms, we investigate here the role of articulatory
knowledge in learning phonetic units. We focus on the categorization of consonants in
varying vocalic contexts, known to be difficult from acoustic input, as mentioned in the
Introduction. In line with recent studies conducted in the scope of the zero-resource

1 The source code can be downloaded at https://github.com/georgesma/agent.
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challenge (Dunbar et al. 2019; Morita and Koda 2020), we use the VQ-VAE model to
learn quantized representations that can provide a basis for phonetic categories. VQ-
VAEs were trained from ground truth articulatory data derived from available datasets
for English and French, and compared with VQ-VAEs trained from their acoustic
counterpart. The present series of simulations extends those in Georges, Schwartz, and
Hueber (2022) with a larger number of speakers and new evaluation metrics.

2.1 Datasets

All experiments reported in this article are based on the two publicly available
articulatory-acoustic datasets PB2007 and MOCHA-TIMIT.

PB2007 dataset (Badin et al. 2022). This corpus contains recordings of 1,109 items includ-
ing two repetitions of the 14 isolated French vowels (3% of the corpus), two repetitions
of the 224 VCV sequences where C and V are, respectively, one of the 16 consonants
and 14 vowels of French (51%), two repetitions of 109 pairs of CVC French words (36%),
and 88 sentences (10%). Once the silences have been removed, this corpus represents 17
minutes of speech. Movements of the tongue, jaw, and lips during speech production
were recorded at 200 Hz using a 2D Carstens electromagnetic articulograph (EMA)
synchronously with the speech sound. For this aim, 6 EMA coils were attached on
the jaw, lower and upper lips, and tongue (apex, middle, and back of the tongue). The
phonetic segmentation of the acoustic recordings was first obtained with decoder based
on hidden Markov models and then manually corrected.

MOCHA-TIMIT (Wrench 2000). This corpus consists of the productions of 6 English
speakers, 2 male and 4 female (we excluded the 7th, [female] speaker falh0 from our ex-
periments since there were issues in the articulatory recordings). Each speaker produced
the same 460 short sentences for durations varying from 17 to 20 minutes once silences
were removed. The articulatory trajectories were acquired with a Carstens articulograph
at a sampling rate of 500 Hz using the same setup as for the PB2007 corpus with
an additional coil attached to the velum. The phonetic segmentation of the acoustic
recordings was obtained automatically using the pre-trained acoustic models and the
pronunciation dictionary available in the Montreal Forced Aligner toolkit (McAuliffe
et al. 2017).

2.2 Acoustic Features

For both datasets (PB2007 and MOCHA-TIMIT), the spectral content of the acoustic
recordings (initially recorded at 16 kHz) was encoded into a sequence of 18 Bark-
scale cepstral coefficients (following a short-term Fourier analysis parameterized by a
window size of 20 ms and a hop size of 10 ms). This representation was chosen with
the use of the LPCNet neural vocoder in mind (Valin and Skoglund 2019). This vocoder
explicitly dissociates source (f0 and periodicity) and filter (cepstral coefficients) features,
making it well-suited to be interfaced with articulatory data.

2.3 Articulatory Features

First, EMA trajectories were downsampled at 100 Hz in order to match the analysis rate
of the acoustic signal. Then, raw EMA coordinates were reduced into lower dimension
vectors referred to here as “articulatory features.” Those features are expected to reflect
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the degrees of freedom of the vocal tract, notably by decoupling the movement of the
jaw with respect to the movements of the tongue and the lower lip (which is not the
case when considering the raw EMA data). To that purpose, we followed the procedure
described in Maeda (1990) and Serrurier et al. (2012) and referred to as a guided
Principal Component Analysis (guided-PCA).

Guided-PCA consists of sequentially extracting interpretable articulatory features
from restricted sets of coil data. Firstly, a jaw height parameter (JH) is defined as the first
component of a PCA of the EMA coil attached to the lower incisor. Its contribution to
the movement of the three tongue coils is then estimated using linear regression, and a
movement residue for tongue coils is computed by removing this JH contribution. Then
two new articulatory features are introduced, namely, tongue body (TB) and tongue
dorsum (TD), provided by a PCA applied to the coordinates of the residual movement
(removing JH contribution) of the two back EMA tongue coils on the middle and the
back of the tongue. The contribution of TB and TD to the residual movements of the
coil attached to the tongue tip coil is then estimated by linear regression and removed
to compute a final movement residual. PCA applied to the two coordinates of this
residual provides the tongue tip parameter TT. In the same way, for lip features, the
JH contribution is first removed from the movements of the two lip coils. Then, two
PCA analyses separately realized on the set of vertical vs. horizontal movements of the
upper and lower lip coils provide the lip height (LH) and lip protrusion (LP) features,
respectively. Finally, and only for the MOCHA-TIMIT corpus, an additional articulatory
feature VL is obtained by reducing the 2D coordinates of the velum coils into a 1D
feature using PCA. An example of extracted articulatory features for corpus PB2007 is
given in Figure 1.

Guided PCA

G
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d
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A

(a)

(b)

(c)

Figure 1
(a) Experimental setup used for the recording of the PB2007 dataset (6 coils attached on tongue,
lips, jaw). (b) Extraction of interpretable articulatory features from raw EMA coordinates using a
guided-PCA procedure. (c) Trajectories of the 3 EMA coils attached to the tongue (tip, mid, bck).
while producing the sequence /ata/ and the corresponding articulatory features: Tongue Body
(TB), Tongue Dorsum (TD), and Tongue Tip (TT), bottom.
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2.4 Speech Unit Encoder Based on VQ-VAE

A vector quantized variational autoencoder (VQ-VAE; Van Den Oord, Vinyals et al.
2017) can be seen as a discrete version of a variational autoencoder (VAE, Kingma and
Welling 2014; Rezende, Mohamed, and Wierstra 2014). It has an encoder-decoder archi-
tecture. The decoder defines a posterior distribution pθ(x|z) of the input observation x
given a latent variable z. The parameters of this distribution are provided by a DNN
(with weights θ). Symmetrically, the encoder defines a posterior distribution qφ(z|x) of
the latent variable z given an input observation x (also parameterized by a DNN with
weights φ). Contrary to the VAE, this posterior distribution is categorical, such as:

qφ(z = ek | x) =

{
1 for k = argminj‖ze(x)− ej‖
0 otherwise

(1)

with ze(x) the output of the encoder, and {ei} with i ∈ 1, 2, . . . , K a set of K D-
dimensional vectors (representations). k is defined as the index of the closest vector ek
with respect to the output of the encoder (nearest neighbor look-up). Therefore, in a VQ-
VAE, the latent variable z is discrete. Later on, we will refer to the discrete latent variable
z associated with a given x as zq(x). This representation vector is then used as the input
of the decoder. The codebook (i.e., the set of learned representations) is estimated from
the data in an unsupervised manner, in addition to the parameters of both encoder and
decoder neural networks. The loss function of the VQ-VAE optimized during training
can be expressed as follows:

LVQ-VAE = − log pθ(x|z = ek) + ‖sg[ze(x)]− ek‖2 + β‖ze(x)− sg[ek]‖2 (2)

where sg[] denotes the stop-gradient operation, and β is a weighting term.
As illustrated in Figure 2, for each speaker and each dataset, we trained VQ-VAEs

for single modalities, that is, one VQ-VAE from articulatory features only, referred to as
the “articulatory VQ-VAE” and a second one from the corresponding acoustic features
(“acoustic VQ-VAE”). As a first way of combining both modalities, we investigated an
“early fusion” strategy based on the concatenation of articulatory and acoustic feature
vectors (the resulting model is named “articulatory-acoustic VQ-VAE”). A second way
of combining the modalities consists in “late fusion“ in which the outputs of the two
single-modality VQ-VAEs jointly define the representation associated with a given
frame. We discuss later in Section 2.6.1 how these two components are combined for
characterizing the multimodal representation content.

2.5 Implementation Details

First, contextual feature vectors xt ± τ = [xT
t−τ; · · · ; xT

t+τ]T (with T the transpose oper-
ator) are built for each feature vector xt and used as input of each VQ-VAE. We set
τ = 2, bringing the temporal span of a learned discrete unit to 50 ms. This choice was
mainly based on previous studies in the field for which a 1D convolutional layer is
typically used to downsample the input sequence (as in Tjandra, Sakti, and Nakamura
2020, where a stride parameter equal to 4 is used in the convolution). For each VQ-VAE,
the encoder was built with 3 fully connected layers and the hyperbolic tangent used
as the activation function (dropout and batch normalization layers were inserted after
each fully connected layer with a dropout ratio of 0.25), and with a final linear layer of
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Figure 2
Proposed framework for learning discrete speech units from articulatory and/or acoustic speech
data using VQ-VAEs.

the size the dimension of the codebook vectors (i.e., D). A similar structure was used for
the decoder, but the final linear layer was adapted to the size of the input data. Similarly
to Van Den Oord, Vinyals et al. (2017), the value of the weighting term β in the VQ-VAE
loss function (Equation (2)) was set to 0.25. For each experiment, training data were z-
scored. Model training was done using back-propagation with the Adam optimizer.
Each mini-batch was made of all contextual feature vectors xt ± τ extracted from 8
training sentences randomly selected. The implementation was done using the PyTorch
toolkit (Paszke et al. 2019). For each simulation, the datasets were randomly partitioned
with 80% of the data used for training and the remaining 20% used for testing; 20% of
the training set was used as a validation set to control the early stopping and optimize
several hyperparameters with a dedicated optimization procedure described later in
Section 2.6.2.

2.6 Metrics
2.6.1 The Machine ABX Sound Discrimination Test. ABX tests were used to assess the
phonetic properties of the latent representations learned by the different VQ-VAEs. ABX
tests are based on the idea that the learned representations of two occurrences of the
same category (A and X) should be closer to one another than to an occurrence of a dif-
ferent category (B). In this work, we use ABX tests to assess how articulatory vs. acoustic
modalities may contribute to the discovery of phonetic units. This is how we implement
the concept of “invariance,” which corresponds to the search for phonetic (articulatory
or acoustic) features likely to distinguish between two phonemic categories. As stated
in the Introduction, we focused on consonants in varied left and right vocalic contexts.
For each speaker (one for the PB2007 dataset and 6 for the MOCHA-TIMIT dataset),
we extracted all VCV sequences. From these sequences, and for all consonants, we
built a set of triplets A, B, and X. A and X are the representations associated with
two occurrences of the same consonant but potentially in a different vocalic context
(all possible vocalic contexts were represented in proportion to their frequency in the
corresponding evaluation set). B is the representation associated with an occurrence of
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a different consonant. We then compared the distance between A and X on one hand
and between B and X on the other.

The distance was defined as the mean frame-wise cosine distance along a dynamic
time warping (DTW) path, computed as follows: (1) for each VCV (A, B, and X), we
extracted the corresponding sequence of quantized representations from the VQ-VAE;
(2) we kept only the frames corresponding to the central consonant relying on the
available segmentation of each corpus at the phonetic level; (3) we time-aligned the
consonants of A and X on the one hand, and B and X on the other using the DTW
algorithm; and (4) we calculated the average cosine distances along the DTW path
for both A vs. X (dA,X) and B vs. X (dB,X). A single ABX test is considered “passed” if
dA,X ≤ dB,X. To reduce the computational cost, this ABX test was not done for all possible
A, B, and X triplets in each dataset, but only from a randomly selected subset of 5,000
triplets, ensuring that each (A, B) pair is evenly represented. Then, for the corresponding
simulation condition, a global discriminability score (“global ABX score”) was defined
as the average success rate of all individual ABX tests.

In addition to the early-fusion strategy mentioned above (see Figure 2), we inves-
tigated another approach for combining the two modalities for the ABX tests. When
processing A and X stimuli, we computed dmerge

A,X = ω.dac
A,X + dart

A,X where dac
A,X is the

distance between A and X obtained for the acoustic VQ-VAE (using the DTW-based
procedure described above), dart

A,X is the distance between A and X obtained with the
articulatory VQ-VAE, and ω a weight factor. We did the same for the (B, X) pair. A
single ABX test was then considered “passed” when dmerge

A,X < dmerge
B,X . This approach is

referred to as “late fusion.”

2.6.2 Hyperparameter Tuning. Since the aim here is to investigate whether, and to what
extent, the articulatory modality can provide additional and complementary informa-
tion to the problem of finding discriminant phonetic representations, we looked for the
model architecture that directly optimizes this aspect, that is, the average ABX score (on
the validation set). For that purpose, we used the TPE algorithm (Tree of Parzen Estima-
tors) (Bergstra et al. 2011) implemented in the hyperopt package (Bergstra, Yamins, and
Cox 2013) to optimize the number of fully connected layers (Nl ∈ [1, 2, 3, 4]), the number
of neurons in each layer (Nn ∈ [64, 128, 256, 512]), the dropout ratio, the learning rate,
the size of the codebook (with K ∈ [32, 64, 128, 256, 512, 1,024], and D ∈ [8, 16, 32, 64,
128, 256]), with respect to the ABX score. For each set of hyperparameters, we trained 5
different models on random splits of the datasets and averaged their performance.

2.6.3 Unit Duration and Phone-normalized Mutual Information. To analyze the extent to
which the learned discrete units share similarities with phones, we computed the
average duration of the learned discrete units and their phone-normalized mutual
information (PNMI), standardly used to investigate clustering quality (e.g., Hsu et al.
2021). Given a sequence of discrete units, the average duration is simply computed as
the average duration over which the same unit is repeated.

Regarding the PNMI between the discrete units learned by our VQ-VAE algo-
rithm z = [z1, z2, . . . , zT] and their aligned frame-level phonetic transcription y =
[y1, y2, . . . , yT], it is computed as:

PNMI(y, z) =

∑
i
∑

j pyz(i, j) log pyz(i, j)
py(i)pz( j)∑

i py(i) log pz( j)
(3)
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Table 1
Optimization of the VQ-VAEs hyperparameters (Experiment 1). Format: number of layers x
number of neurons per layer / K / D (K = number of representations and D = dimension of
representations).

Speaker ID Acoustic Articulatory Early Fusion

PB2007 2×512 / 512 / 64 3×256 / 512 / 64 2×128 / 512 / 128
MOCHA (fsew0) 2×512 / 512 / 64 2×256 / 512 / 8 2×128 / 512 / 128
MOCHA (mjjn0) 2×512 / 512 / 64 3×64 / 128 / 64 2×128 / 512 / 128
MOCHA (faet0) 2×512 / 512 / 64 3×256 / 512 / 64 2×128 / 512 / 128
MOCHA (fjmw0) 2×512 / 512 / 64 3×256 / 512 / 64 2×128 / 512 / 128
MOCHA (ffes0) 2×512 / 512 / 64 1×128 / 128 / 8 2×128 / 512 / 128
MOCHA (msak0) 2×512 / 512 / 64 1×512 / 128 / 16 2×128 / 512 / 128

where i is the i-th phone category, j is the j-th VQ-VAE category, py (resp. pz) is the
probability distribution over y (resp. over z), and pyz is the joint probability distribution
between y and z. The PNMI measures the percentage of uncertainty about the phone
label y removed from observing the VQ-VAE label z. Higher PNMI indicates better
clustering quality.

2.7 Results

We first present in Table 1 the results of the hyperparameter tuning for both the PB2007
and the MOCHA-TIMIT dataset.

Interestingly, the tuning procedure does not always select the most complex archi-
tecture or the largest codebook. This is particularly true for the articulatory VQ-VAEs
(with a codebook of limited size for the speakers msak0, ffes0, mjjn0).

We now discuss the average ABX score for the acoustic and articulatory VQ-VAEs
and the early fusion strategy presented in Figure 3. We observe a significant difference
between the PB2007 and the MOCHA-TIMIT dataset, with, for instance, a 92% vs. 82%
consonant discrimination rate for the acoustic VQ-VAEs (similar trends are observed
for the articulatory and the early-fusion conditions). This result can be understood in
terms of linguistic content, which varies considerably from one dataset to the next:
The MOCHA-TIMIT dataset is made up of sentences only, while the PB2007 dataset
contains a high proportion of VCVs, isolated vowels, and short words likely to be
less prone to coarticulation. Consequently, we now dissociate these two data sets and
report in Figure 3 the average ABX scores on the MOCHA-TIMIT dataset only. First, no
significant difference was found between the acoustic and the articulatory modalities
in terms of ABX score (82.8% vs. 82.36%). However, the ABX score obtained when
combining the two modalities is significantly higher (88%). These results suggest that
the two modalities carry complementary information that can be combined by the
developing child to access phonemic information.

To better understand the complementarity between the acoustic and articulatory
modalities, we display in Figure 4 the average ABX discriminability scores for each
consonant pair for the PB2007 dataset (a similar tendency is observed on the MOCHA-
TIMIT dataset). We observe that for the articulatory VQ-VAE, the discriminability scores
are lower for consonant pairs with the same place of articulation, for example, coronal
(/s/ vs. /d/) or labial (/f/ vs. /b/), while for the acoustic VQ-VAE, scores are lower
for pairs of consonants with the same manner of articulation, for example, unvoiced
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Figure 3
Global ABX scores obtained with respect to the modality considered in the VQ-VAE based
experiments (acoustic/articulatory/early-fusion of the two) for the 6 speakers of the
MOCHA-TIMIT dataset. Error bars represent standard errors computed across speakers
and statistical significance is assessed using paired t-tests on the logits.

Figure 4
ABX scores for each pair of consonants computed for dataset PB2007.
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fricatives (/f/ vs. /s/). Therefore, it seems that the learned representations have the
same power in terms of phonetic discriminability while being different and comple-
mentary in nature.

We carried out a more detailed analysis of how each type of representations enables
the discrimination of consonants according to their place and manner of articulation.
To this end, we defined two distinct ABX discriminability scores, respectively called
“ABX manner” and “ABX place.” To calculate the former (focused on the manner of
articulation), we grouped consonants into three subgroups with similar places of artic-
ulation: labial, coronal, and dorsal. We applied the ABX test methodology within each
group (for example, for the labial group, A is /abo/, X is /iba/, and B is /uvo/) and
calculated the average success rate for the three groups. To calculate the second score
(related to place of articulation), we applied the same procedure, but after grouping
consonants according to their manner of articulation. We considered the following five
subgroups: voiced occlusive consonants, unvoiced occlusive consonants, voiced frica-
tives/affricates, unvoiced fricatives/affricates, and sonants (i.e., liquids and nasals). The
two discriminability scores “ABX manner” and ”ABX place,” for both the acoustic and
articulatory modalities, as well as for the early fusion and late fusion strategies, and for
all speakers considered in this study, are presented in Figure 5. The results confirm that
the articulatory VQ-VAE provides latent representations that better discriminate the
place of articulation, while the acoustic VQ-VAE structures the latent space primarily in
terms of manner of articulation. Interestingly, the early-fusion strategy model provides
slightly better results than the articulatory-only VQ-VAE in terms of place of articula-
tion and moderately poorer performance than the acoustic-only VQ-VAE in terms of
articulation mode. As for the late fusion strategy, by modulating the contribution of
representations from the acoustic and articulatory VQ-VAE (i.e., ω varying between
10−1 and 101), performances follow a trajectory with an optimal value that takes almost
the best of each modality, namely, with values equaling the articulatory VQ-VAE for
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Figure 5
ABX scores with respect to place and manner of articulation for single modalities compared with
early and late fusion strategies. Late fusion performance varies withω ranging from 10−1 (cyan)
to 101 (purple). Left: Results for the single speaker of PB2007 dataset. Other plots: Results for the
6 speakers of the MOCHA-TIMIT dataset.
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Figure 6
(Left) Average unit duration (in ms) for the acoustic, articulatory, and acoustic-articulatory
VQ-VAE with a codebook of size 512 in comparison with the average phone duration.
(Right) Phone-normalized mutual information for the same acoustic, articulatory, and
acoustic-articulatory VQ-VAEs in comparison with the phone normalized mutual information.
Each dot represents an independent training on one of the six speakers from the MOCHA-TIMIT
dataset included in this study. Error bars represent standard errors computed across speakers
and statistical significance is assessed using paired t-tests on the logits.

place and the acoustic VQ-VAE for manner. Altogether, these experiments show that
both fusion strategies can efficiently take advantage of the acoustic and articulatory
modalities for phoneme categorization.

We now analyze the temporal similarities between the learned discrete represen-
tations and actual phones. An analysis of the duration (left graph of Figure 6) reveals
that articulatory units are almost twice longer than acoustic units (45 ms vs. 26 ms).
Early fusion of acoustic and articulatory features yields shorter units as compared to
articulatory units (30 ms vs. 45 ms). In all conditions, the learned discrete units are much
shorter than actual phones with an average duration of 86 ms.

The PNMI scores presented in the right graph of Figure 6 indicate that acoustic units
share slightly more information with actual phones than articulatory units (PNMI of
.38 for acoustic units versus .35 for articulatory units). Fusing acoustic and articulatory
features yields an increase in PNMI, reaching a value of .47. This increase confirms that
acoustic and articulatory representations contain complementary information regard-
ing phone categories, as supported by our ABX analysis presented in Figure 5.

2.8 Conclusions

This first experiment focused on the role of the articulatory modality in learning pho-
netic representations. The results show that the acoustic and articulatory modalities
complement each other and can be jointly exploited for the discovery of phonetic units,
in line with motor and perceptual-motor theories of speech perception. The challenge
for the developing child is to learn to retrieve motor information from a purely auditory
stimulus without being explicitly provided with the mapping between speech sounds
and underlying articulatory gestures. It is this question of self-supervised learning of
this mapping that we are attempting to address with the help of a simulation based on
deep learning, and the development of a computational agent able to learn by vocal
imitation, presented in Section 3.
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3. Experiment 2: Computational Modeling of Speech Learning

Using computer simulation, we investigate here how a child can learn the complex
and ill-posed relationship between speech units, speech sounds, and corresponding
articulatory gestures. To that purpose, we proposed a computational agent learning
to drive its virtual vocal apparatus by imitating auditory stimuli. We proposed two
versions of this agent, respectively called the “continuous” and the “discrete” version.
The former is similar to the one reported in our previous study (Georges et al. 2022).
It is trained to minimize the discrepancies between perceived and repeated auditory
stimuli in the spectral domain without explicitly decoding discrete (and potentially
less variable) speech units. The discrete version includes two additional modules for
learning such units from both the acoustic input and the inferred articulatory trajecto-
ries. Similarly to the simulations in Experiment 1 (see Section 2), these two modules
are based on VQ-VAEs. It is important to note that, unlike the continuous version of
the proposed agent, the discrete one evaluates the distance between perceived and
produced auditory stimuli in the unit domain (rather than in the spectral one). In other
words, the agent is here expected to explicitly decode and preserve a certain “linguistic
content” encoded in a sequence of discrete units. For the two versions of the proposed
agent, we also investigated specific mechanisms to constrain the acoustic-to-articulatory
mapping, referred to here as inductive biases.

3.1 Design of the Computational Agent

The architecture of the proposed agent is presented in Figure 7. Its core modules and
the proposed training algorithm are presented in the following sections.

3.1.1 Neural Articulatory Synthesizer. To avoid modeling the complex (and often speaker-
dependent) physical, biomechanical, and acoustic processes underlying speech produc-
tion, we use a deep neural network to model the relationship between the configuration
of the vocal tract on the one hand and the spectral content of the resulting sound on the
other, based on data recorded from a real speaker. To that purpose, we proposed a “neu-
ral articulatory synthesizer” composed of 2 main modules: a DNN-based articulatory-
to-acoustic mapping φ and a neural vocoder.

Articulatory-to-Acoustic Mapping. In the proposed approach, a feedforward DNN maps
a vector of 6-D articulatory features a to an 18-D vector of acoustic features (cepstral
coefficients in Bark-scale) ŝ = φ(a). The model used in the present study comprises 4
fully connected layers of 512 neurons each (with batch normalization and dropout after
each layer). The hyperbolic tangent was used as activation function for the neurons of
the hidden layers. This model was trained on the entire PB2007 dataset using back-
propagation with Adam optimizer, on mini-batches of 32 observations and with the
mean squared error (MSE) as loss function (20% of the training data were used for
controlling early-stopping).

Waveform Generation. Acoustic features estimated from articulatory parameters, com-
bined with source parameters (f0 and periodicity) directly extracted from the original
signal, are finally fed into a neural vocoder to generate the speech waveform. In the
present study, we used the LPCNet neural vocoder (Valin and Skoglund 2019). Starting
from a pre-trained version trained on a large acoustic database, we fine-tuned (for 56
epochs) the model to the speaker’s voice of the PB2007 dataset. Importantly, this neural
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Figure 7
Overview of the proposed computational agent learning to drive an articulatory synthesizer by
imitating auditory stimuli. Flows of information in solid lines, loss computations in big-dash
lines, ABX measurements in small-dash lines. For the continuous version, audio input s is
directly sent to the inverse model. For the discrete one, audio input s is first quantified from a
(learned) codebook of representations zq(s) using the acoustic VQ-VAE. Articulatory trajectories
a = g(zq(s)) (or a = g(s) in the continuous case), inferred using the LSTM-based inverse model g,
are sent both to the pre-trained neural articulatory synthesizer (φ, i.e., the plant, assumed to be
non-differentiable) which provides the repetition of the input stimulus by the agent s̃ = φ(a),
and to the forward model f which provides the “mental” simulation of the synthesis process
ŝ = f (a). Both internal models (forward and inverse) are trained using the algorithm described in
Section 3.1.4. MSE(.) denotes the mean square error. For the discrete version of the agent, the
acoustic VQ-VAE is trained only from the auditory input, while the articulatory VQ-VAE is
trained only from the inferred articulatory trajectories. The two (optional) inductive biases aim
at regularizing the acoustic-to-articulatory inverse mapping. They are respectively based on the
minimization of the jerk of the inferred articulatory trajectories and on the use of an adversarial
loss expected to prevent the inference of non-plausible vocal tract configurations. ABX tests
assess the phonetic properties of auditory inputs and inferred articulatory trajectories, either
before (continuous version) or after (discrete version) being quantized by the acoustic and the
articulatory VQ-VAEs, respectively.

articulatory synthesizer is used here as a pre-trained module. When used within the
computational agent for learning the inverse and forward models, described in the next
sections, only the articulatory-to-acoustic mapping part is used, and its parameters are
not updated. The waveform generation part is used only for listening tests.

3.1.2 Internal Models
Forward Model. The agent’s forward internal model f predicts the acoustic consequences
s̃ = f (a) of the execution of a sequence of articulatory commands a. Similarly to the
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neural articulatory synthesizer, it is implemented as a feed-forward DNN. However,
unlike the neural articulatory synthesizer, kept frozen all along the learning phase,
the forward model parameters are randomly initialized. Hence, the forward model
contains no prior knowledge of the properties of the agent’s vocal apparatus, and it
must be trained by “listening” to the outputs of the agent’s plant in order to learn
to provide good estimates of the acoustic result of articulatory commands. We used
the same hyperparameter tuning strategy already described in Section 2 to find the
optimal architecture for the forward model, though the criterion here was based on
the minimization of the MSE on the spectral distance between the synthesized and the
forward model outputs. The optimal network turned out to be a 4-layer FF-DNN with
512 neurons in each layer.

Inverse Model. The inverse internal model g is used to estimate the sequence of articula-
tory feature vectors a = [a1, · · · , aT] to be sent to the synthesizer in order to approximate
the auditory input s = [s1, · · · , sT]. It is implemented as a unidirectional LSTM network
with two recurrent layers and one final linear layer. Approximation is evaluated either
directly in the continuous version or after discretization by the acoustic VQ-VAE in the
discrete version. Hyperparameter tuning was based on the minimization of the corre-
sponding MSE between the auditory input to imitate and the forward model output,
directly in the spectral components in the continuous version or after discretization in
the discrete version. We selected an architecture providing optimal or quasi-optimal
performance in both the continuous and discrete versions of the agent, comprising 2
LSTM layers with a 32 hidden state dimensionality and a dropout parameter p = 0.25.

3.1.3 Inductive Biases. In order to better tackle the ill-posed nature of the acoustic-to-
articulatory mapping and to guide the proposed agent to plausible articulatory trajec-
tories, we investigated the use of specific mechanisms to constrain the learning process
in our algorithms, referred to as inductive biases. We considered two mechanisms: The
first one is inspired by optimal control theory and focuses on the dynamics of inferred
articulatory features, while the second aims to keep these features within plausible
ranges. These inductive biases are detailed in the following paragraphs.

Minimum Jerk. Optimal control deals with finding the control inputs of a system that
optimize a certain performance criterion. In order to guide the agent to smooth trajecto-
ries, we use the minimization of the jerk as an additional criterion to optimize during the
learning phase. For each articulatory feature, the agent is encouraged to find a minimum
jerk trajectory from the beginning to the end of the sentence. This inductive bias can be
introduced through the following additional loss, defined as the mean square jerk along
the trajectory (as in Rajpal and Patil 2016) expressed as:

Ljerk =
1
T

∫ T

0

(
d3at
dt3

)2

dt (4)

GAN-based Geometrical Constraint. In the absence of any constraints, the inverse model
can generate articulatory configurations that do not reflect those adopted by our speaker
used to train the neural articulatory synthesizer. For instance, some articulators’ po-
sitions can be outside the limits of the EMA data, or two articulators can result in
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unrealistic configurations (e.g., the lower lip above the upper lip). To alleviate this issue,
we condition the generated articulatory configurations using a generative adversarial
network (GAN)-based approach. To do so, we introduce a discriminator network that
is trained to discriminate between generated and real articulatory configurations by
maximizing the following loss:

LD = 1
T

T∑
t=1

[log(D(ât)) + log(1−D(at))] (5)

where ât is a randomly sampled real articulatory frame, at is a generated articulatory
frame, and D(ât) (resp., D(at)) is the probability returned by the discriminator for the
generated (resp., real) articulatory frame.

Conversely, the inverse model is trained to fool the discriminator by minimizing:

LGAN = 1
T

T∑
t=1

log(1−D(at)) (6)

3.1.4 Learning Algorithm. The objective pursued by this agent during its learning pro-
cess is threefold. It must (1) build a repertoire of discrete units representing speech
compactly, (2) learn to recognize these units in the sounds it perceives, and (3) learn
to control its plant (i.e., the neural articulatory synthesizer) so as to produce sounds
containing as much as possible the same units as those perceived. Starting from a
random initialization, the multi-task learning procedure used to jointly train the VQ-
VAE, and both the forward and inverse models is presented in Algorithm 1.

Importantly, freezing the weights of the forward model in step 13 ensures that the
acoustic error MSE(̂s, s) (in the continuous version) or MSE(ze (̂s), zq(s)) (in the discrete
version) between the target acoustic input and the output of the inverse-forward model
chain generates a signal error only in the inverse model, in charge for adequate control
of the forward model. In practice, we train the proposed agent with batch size B = 8.
Early stopping was used to prevent overfitting and stop the training. The inverse and
forward internal models were trained for at least 50 epochs and the patience parameter
was set to 25 epochs. For the discrete version of the agent, it proved necessary to pre-
train the acoustic VQ-VAE before the inverse model, as the latter’s loss function is
calculated from representations of the learned units, which must therefore be more or
less already stabilized. The acoustic VQ-VAE is trained only from the acoustic input s.
The parameters λj and λg used to weight the influence of static and dynamic inductive
biases were set to 0.05 after some preliminary tests on the validation set. However,
the search for the most efficient weighting strategy proved to be a difficult task that
should be further explored in future work. Finally, in the discrete version of the agent, an
articulatory VQ-VAE, extracting speech units from the inferred articulatory trajectories,
is trained separately (with the same early-stopping criterion as for the acoustic VQ-
VAE). Hence, at this stage of our work, the articulatory VQ-VAE is not involved in the
perception-production loop per se, it just enables assessment of the articulatory content
of the discrete agent at the end of the simulation.

3.1.5 Experiments. In the proposed series of simulations, the agent received auditory
stimuli extracted from the test partition of the PB2007 dataset, which is the dataset
used to train the neural synthesizer (i.e., the “voice” of the agent). Admittedly, this
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Algorithm 1 Learning algorithm of the proposed computational agent (continuous and
discrete version)

1: Initialize: Random initialization of parameters of both the forward f and inverse
model g, and the acoustic VQ-VAE (discrete version)

2: for each training iteration do
3: Sample a mini-batch of B sequences of acoustic features {s1, s2, . . . , sB} from the

dataset
4: for b = 1 to B do
5: Compute acoustic VQ-VAEs decoder input (discretized version of the en-

coder output) zq(sb,t±τ) for each time step t, with τ the size of the context
considered around the frame of interest (discrete version)

6: Compute inverse model output: at = g(sb,t±τ) (continuous version) or at =
g(zq(sb,t±τ)) (discrete version) for each time step t

7: Compute neural articulatory synthesizer output: s̃b,t = φ(ab,t) for each time
step t

8: Compute forward model output: ŝb,t = f (ab,t) for each time step t
9: Compute the output of the acoustic VQ-VAE’s encoder ze (̂sb,t) for each time

step t (discrete version)
10: end for
11: Update the acoustic VQ-VAE using Equation (2) (discrete version)
12: Update forward model f to minimize Lforward = MSE(̂s, s̃)
13: Update inverse model g to minimize Linverse = MSE(̂s, s) + λjLjerk + λgLGAN (con-

tinuous version) or Lrecons = MSE(ze (̂s), zq(s)) + λjLjerk + λgLGAN (discrete ver-
sion) while keeping the forward model unchanged.

14: end for

experimental setup is not realistic since a child at this early stage of life has never
received perfectly articulated speech from their own voice. However, this setup can
provide a topline since it alleviates the problem of speaker normalization, that is,
the ability to decode phonologically identical utterances uttered by different speakers
despite large acoustic variability. An experiment with several speakers is left open for
future work (this point is briefly discussed in the conclusive section 4).

For each simulation, the data sets were randomly distributed with 80% of the data
used for training and the remaining 20% for testing; 20% of the training set was used
as a validation set (to control early stopping). The data were centered and reduced each
time, using the mean and variance calculated on the training set. We trained 5 agents,
each time with a different random partitioning of the data sets. Performance measures
reported here consist of the average performance over these 5 evaluations.

3.2 Metrics
3.2.1 ABX Evaluation of the Acoustic and Articulatory Content of the Agent’s Productions.
First, as in Experiment 1, we assessed the phonetic discriminability power of the acous-
tic and articulatory content of the agent’s productions using the ABX methodology
described in Section 2.6.1. In the continuous version, evaluation was done directly by
evaluating the ABX score from the raw audio input and the inferred articulatory data
(i.e., from s and a). In the discrete version enabling the quantification of the effect of the
discretization done by the VQ-VAEs, ABX scores were computed on the representations
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learned by the acoustic and articulatory VQ-VAEs (i.e., zq(s) and z′q(a)). ABX scores
computed on the agent’s productions were compared to ground truth data, that is, ABX
scores computed on the acoustic and articulatory content of the PB2007 dataset. For the
discrete version, this corresponds to the data already presented in the previous section
(Figure 5), called “quantized gold spectral” and “quantized gold articulatory” in the
following. For the continuous version, this provides new ABX scores directly computed
from the raw acoustic and articulatory data in PB2007, called “gold spectral” and “gold
articulatory” in the following.

3.2.2 Perceptual Evaluation of the Agent’s Productions. Second, we tested the quality of the
phonemic content of the speech signal produced by the proposed agent (discrete version
only) using a subjective evaluation by human listeners. For this aim, we extracted from
the test corpus a set of isolated oral vowels in {i, y, u, e, ø, o, a} and a set of non-nasal
consonants in {b, d, g, p, t, k, f, v, s, z, S, Z} in a VCV context, with V one of the three
vowels {i, a, u} (since the PB2007 dataset does not contain information about the velum).
For each item, we synthesized 5 audio stimuli using LPCNet by combining the original
source parameters (f0 and periodicity feature) with different sets of articulatory features:
(1) ground truth from the PB2007 dataset (in order to evaluate the neural articulatory
synthesizer independently from the agent), (2) the (discrete) agent’s predictions when
considering no inductive bias, (3) same but with the static bias (GAN-based), (4) same
but with the dynamic bias (Jerk minimization), and (5) same but with both biases. These
sets, comprising a total of 195 synthesized stimuli, were evaluated by 30 participants
who self-identified as native French speakers. The stimuli were presented in an online
test through the Prolific platform. The full set of isolated-vowel (respectively, VCV)
stimuli was presented, and participant had to listen to each stimulus and to indicate
the perceived vowel category (forced-choice within all possible vowel categories, hence
7 possibilities), respectively, consonant category (possibility for the participant to indi-
cate the absence of the central consonant in a VCV, hence altogether 13 possibilities).
Participants indicated their choices by clicking on a series of buttons associated with
each vowel (respectively, consonant). The presentation order was randomized across
subjects and conditions.

3.3 Results
3.3.1 Qualitative Description of the Learned Articulatory Trajectories. As a qualitative eval-
uation of the effect of the two proposed inductive biases, we present in Figure 8 the
articulatory trajectories predicted by the inverse model of the proposed agent (discrete
version) for the sounds [aga] and [aba]. First, without any constraints (λj = 0 and λg = 0;
i.e., no inductive bias, orange dotted curve), the inferred articulatory parameters seem
to oscillate from one timestep to the next, and sometimes achieve very high or low
values. To some extent, the two inductive biases address these issues and complement
each other. The dashed green curve (λj = 0 and λg = 0.05), partly overlaying the dotted
orange curve, illustrates how the static inductive bias (GAN-based) functions as a gating
mechanism. It prevents the inverse model from inferring out-of-domain targets, such as
implausible vocal tract configurations (e.g., parts of the tongue above the palate). The
dynamic bias, focused on minimizing jerk, smoothens trajectories to enhance compat-
ibility with real ones, albeit at times excessively. When combined (purple curve), the
two inductive biases result in more accurate articulatory dynamics, particularly for the
tongue tip and tongue body. Nevertheless, the inferred trajectories occasionally deviate
from the true ones. Strikingly, we observe, for example, that while the initial tongue
dorsum upward movement for closing the vocal tract in [g] is correctly captured, the
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Figure 8
Example of articulatory trajectories inferred by the agent (discrete version), with no inductive
bias (λg = 0, λj = 0, orange), with the static one only (λg = 0.05, λj = 0, red), with the dynamic
one only (λg = 0, λj = 0.05, green), or with both (λg = 0.05, λj = 0.05, purple), for the sounds
[aga] (a) and [aba] (b).
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Figure 9
ABX scores with respect to place and manner of articulation computed on gold cepstral
coefficients (yellow stars), gold articulatory trajectories (blue stars), or articulatory trajectories
inferred by the discrete (red triangles) or the continuous agent (green triangles). Transparency
(resp. non-transparency) indicates discrete (resp. continuous) features. Shades of red and green
indicate the presence or absence of inductive biases. The red (resp. green) circle indicates the
average score obtained by the discrete (resp. continuous) agent without biases. Each dot
represents an independent training/validation/test split of the PB2007 dataset.

movement is suddenly totally modified during the plosive closure, the dorsum coming
down and the closure being actually realized by a raising movement of the lips. This is
likely because the model has found that the sound of plosive closure was rather similar,
whatever the plosive, and hence it has decided to realize all closures with the same
labial movement, whatever the plosive. This is indeed coherent with the pattern for the
sound [aba] also displayed on Figure 8, for which the same global pattern among the
various bias conditions emerges, but here with a clear labial movement rather coherent
with ground truth patterns. All these tendencies are also observed for the continuous
version of the proposed agent.

3.3.2 Quantitative Analysis of the Simulation Results. In Figure 9 we display the ABX
scores for place and manner of articulation provided by the various types of agents (i.e.,
discrete vs. continuous and with or without the two biases) compared with gold scores
from ground truth data. The average and standard deviation values computed over the
5 variants of each condition are provided in Table 2. The following trends emerge from
this pattern of simulation results:

1. For articulatory ground truth data, discretization improves the ABX
score for place of articulation, increasing from 83.9% to 91.7% on average
(Table 2). On the contrary, discretization slightly degrades the ABX score
for manner on acoustic ground truth data.

2. All simulations, regardless of the agent and the presence of inductive
biases, provide articulatory outputs that fall far apart from ground truth
articulatory data in terms of ABX place of articulation scores (Figure 9).
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Table 2
Global, place, and manner ABX scores computed on gold cepstral coefficients, gold articulatory
trajectories, or articulatory trajectories inferred by the discrete or continuous agent, with or
without our two biases. Standard deviations are computed on 5 training/validation/test splits
of the PB2007 dataset.

Features ABX global (%) ABX place (%) ABX manner (%)

Discrete gold cep. 89.8 ± 0.9 68.8 ± 1.1 91.1 ± 1.1

Continuous gold cep. 88.0 ± 0.9 71.0 ± 0.3 91.3 ± 0.8

Discrete gold art. 84.0 ± 2.3 91.7 ± 3.2 65.0 ± 1.9

Continuous gold art. 79.4 ± 1.0 83.9 ± 1.8 63.7 ± 0.3

Discrete agent 80.2 ± 1.0 66.4 ± 0.8 80.5 ± 2.6

+ Jerk 77.7 ± 1.9 63.0 ± 2.3 78.0 ± 3.3

+ GAN 79.6 ± 0.4 67.3 ± 2.1 78.1 ± 1.3

+ Jerk + GAN 67.3 ± 12.2 57.7 ± 9.9 65.6 ± 11.7

Continuous agent 77.4 ± 9.7 64.4 ± 9.5 76.6 ± 7.3

+ Jerk 76.1 ± 8.3 63.0 ± 6.8 74.5 ± 8.0

+ GAN 82.0 ± 1.4 70.5 ± 3.1 78.1 ± 2.4

+ Jerk + GAN 79.1 ± 4.6 66.8 ± 7.0 75.8 ± 5.2

Overall, we do not observe a higher ABX score for the predicted
articulatory data than for the acoustic data, as was the case in humans
(Experiment 2).

3. Discretization slightly improves the agents’ ABX scores, though more on
manner (4% gain for agents with no bias) than on place (2% gain for
agents with no bias; see Table 2). It also decreases the variability of
simulation outputs (see standard deviations in Table 2) and hence
stabilizes simulated articulatory trajectories.

4. Inductive biases can lead to increase but also decrease in ABX scores
(Figure 9). It appears that for the continuous version the main gain is
obtained with the GAN bias, particularly for place (6% gain), while for
the discrete version the biases decrease performance. Interestingly, the
GAN bias also decreases the variability of simulation outputs,
particularly for the continuous version (see standard deviations in
Table 2).

5. The variability of simulation results, either due to conditions (versions
and biases) or to fluctuations in performance (among the 5 occurrences of
each type of agent) may lead to ABX scores for place that are higher than
the ABX place score for the gold acoustic condition. This suggests that
some complementarity may be found in the agents’ outputs, even
though globally, their performance remains far from the gold articulatory
score, as mentioned in the first bullet point.

3.3.3 Intelligibility of the Agent’s Synthetic Speech. The results of the perceptual evaluation
are presented in Figure 10.2 The performance of the neural articulatory synthesizer can

2 Audio samples can be found at https://georges.ma/publications/agent/.
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be considered as a topline for the proposed agent (since the speech stimuli are here
synthesized from ground truth articulatory data). The average correct score is 90%
for isolated vowels and 55% for the consonants in VCV sequences (which are more
complicated to synthesize). Confusions such as “d vs. z” and “d vs. n” can respectively
be partly due to lack of information on the tongue tip (the EMA coil used to track the
tip of the tongue is glued 1 cm behind the actual tip) or on the velum. Although this
result may seem relatively low, it is important to note that participants had the option
to indicate that they were unable to identify any consonants in the VCV sequence.
Some may have exercised this option to express that a particular consonant was slightly
less accurately reproduced than the others. Analysis of the agent’s speech productions
shows that, as with the articulatory synthesizer, overall performance on vowels is much
better than on consonants. A positive relative difference is observed for the vowels (e.g.,
90% for the synthesizer vs. 95% for the agent with both the static and dynamic biases).
In contrast, a negative one is observed for the consonants (55% vs. 49%). As a result, the
agent’s overall performance remains close to that of the synthesizer, which may act as
a bottleneck in the proposed computational model. Moreover, we do not observe any
significant effect of inductive biases on the agent’s performance, which therefore only
seem to impact the plausibility of the articulatory trajectories. Several confusions are
made between groups of phonemes sharing the same manner of articulation (e.g., “Z
vs. z”, “s vs. g”). This further indicates that the agent has yet to completely solve the
consonant invariance problem mentioned in the Introduction.

4. Discussion

Let us discuss the results of Experiments 1 and 2 in relation with the questions intro-
duced in Section 1.

The first question concerned the potential role of articulatory knowledge in the
discovery of phonemes. Two major aspects emerge from the analysis of acoustic and
articulatory data of all the studied speakers in Experiment 1. Firstly, there is an inter-
esting complementarity concerning the representation of consonants, regardless of the
vocalic context. The quantized representations of the acoustic VQ-VAE better encode the
manner of articulation while those of the articulatory VQ-VAE better encode the place
of articulation, as assessed by the ABX testing method. The amount of complementarity
is rather large, with a difference between modalities (acoustic vs. articulatory) of around
10% for the English speakers and up to 30% for the French one. It is important to notice
that the articulatory data used in the present study is only a partial description of the
vocal tract shape, with only few flesh point positions tracked by the EMA sensors.
It does not include aerodynamic information on the tongue position with respect to
the palate, nor muscular information on the state of the orofacial muscles. It also
lacks information on the glottal source. All these additional sources of information
could actually play a role in the representation of phonological categories and possibly
improve ABX scores. Interestingly, it appears that introducing a discretization stage
enhances the complementarity between the acoustic and the articulatory modalities
(e.g., for speaker PB2007, the ABX place score for the articulatory data and for the
discrete case is higher than that obtained for the continuous case; see Figure 9). This
suggests that discretization contributes to decrease articulatory variability in spite of
variations of the vocalic context. A possible complementarity between articulatory and
acoustic representations of consonantal features comes in resonance with the old but
still vivid debate between auditory (e.g., Diehl, Lotto, and Holt 2004; Kluender 1994) vs.
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articulatory/motor invariance (e.g., Liberman and Mattingly 1985; Galantucci, Fowler,
and Turvey 2006). In fact, the present data seem to support the nuanced view that both
acoustic and articulatory features should play a role in the representation of phono-
logical units, as underpinned by perceptuo-motor theories such as the Perception-for-
Action-Control Theory (PACT, Schwartz et al. 2012). The second result in Section 2
concerns the dynamics of speech representations. It appears that articulatory trajectories
are more stable than acoustic ones, with less variations in position among the avail-
able VQ-VAE units (see Figure 6). This result may be of interest for a computational
system attempting to learn phonological categories from underlying sensory or motor
trajectories. It is actually not completely surprising, since it is well known that the
articulatory trajectories are smoother than their acoustic counterparts because of strong
nonlinearities in the articulatory-to-acoustic mapping (Stevens 2000).

The second question raised in the Introduction concerned the joint learnability of
acoustic trajectories, speech gestures, and speech units from raw acoustic data. The
results presented in Section 3 provide here a much more mixed set of answers. Indeed,
the simulations with the architecture presented in Figure 7 appear rather successful in
their ability to learn to control a given articulatory synthesizer (see Figure 10), but only
for auditory inputs extracted from the same dataset as the one used to train the neural
synthesizer (i.e., “the agent listens to its own voice”). Preliminary tests (not reported
here) showed that our model was not yet able to correctly address the problem of
speaker normalization. This problem is actually quite classical and the proposed induc-
tive biases were a priori not sufficient to deal with it adequately. Indeed, a number of
studies have proposed deep architectures able to disentangle the linguistic content from
other attributes such as the speaker identity (e.g., Benaroya, Obin, and Roebel 2023), and

Articulatory synthesizer
Audio synthesis from

ground truth articulatory data

Agent
Audio synthesis from predicted articulatory data

Figure 10
Perceptual evaluation of the acoustic output of the neural articulatory synthesizer (blue) and of
the proposed agent (discrete version, pink), for both isolated vowels and central consonants in
VCV sequences, with or without constraining the acoustic-to-articulatory inverse mapping with
the static and dynamic biases.
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a possible extension of this work would consist in introducing such techniques to learn
speaker-independent acoustic representations. But more importantly, it appears that
the articulatory trajectories inferred by the agent, whether in its continuous or discrete
version, are not satisfying in the sense that they do not allow us to recover the acous-
tic/articulatory complementarity observed in our first experiment (i.e., from ground
truth acoustic/articulatory data). This behavior is observed even in the presence of both
static (GAN-based geometrical constraint) and dynamic (Jerk minimization) inductive
biases. These biases improve the inferred trajectories by eliminating implausible vocal
tract configurations and adding smoothness, but do not provide articulatory trajectories
with the same level of complementarity with their acoustic counterparts, as seen in the
first experiment. Independently on these rather disappointing results, the evaluation
methodology we propose in the present work could benefit to other computational
developments in the field. Indeed, a number of neural models of speech imitation and
speech learning emerge in the literature (e.g., Beguš et al. 2023; Krug et al. 2023a, b;
Siriwardena, Espy-Wilson, and Shamma 2022), sometimes accompanied by qualitative
evaluation of the underlying articulatory dynamics. Still, a systematic evaluation of
articulatory information based on ABX place and manner scores, in various kinds
of categorization tasks, could interestingly complement the quantitative evaluation of
these computational models.

A major perspective for this work should in our view involve better integration
of the developmental schedule in the learning process at work in the model. Barnaud
et al. (2019) showed that the endogenous babbling process specified by the so-called
Frame-Content Theory introduced by MacNeilage (1998) could provide a solution to
this problem. Indeed, this theory proposes that infants enter orofacial babbling by a
set of “vertical” gestures associating the jaw with specific single articulators (tongue
tip, tongue dorsum, lips) without moving the tongue from the consonant to the next
vowel. This could provide a bootstrapping mechanism in the discovery of articulatory
invariance, thanks to which infants would then favor such “vertical” gestures for speech
motor control, likely to focus articulatory gestures towards invariant commands for
consonants. A next stage for our work will hence consist in assessing whether adding
this kind of babbling scenario to our computational agent could improve the self-
supervised learning of the acoustic-to-articulatory inverse model.
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