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The brain’s ability to perform complex computations at varying timescales is crucial, ranging
from understanding single words to grasping the overarching narrative of a story. Recently,
multi-timescale long short-term memory (MT-LSTM) models (Mahto et al. 2020; Jain et al.
2020) have been introduced, which use temporally tuned parameters to induce sensitivity to
different timescales of language processing (i.e., related to near/distant words). However, there
has not been an exploration of the relationship between such temporally tuned information
processing in MT-LSTMs and the brain’s processing of language using high temporal resolution
recording modalities, such as electroencephalography (EEG).

To bridge this gap, we used an EEG dataset recorded while participants listened to Chapter
1 of “Alice in Wonderland” and trained ridge regression models to predict the temporally tuned
MT-LSTM embeddings from EEG responses. Our analysis reveals that EEG signals can be used
to predict MT-LSTM embeddings across various timescales. For longer timescales, our models
produced accurate predictions within an extended time window of ±2 s around word onset,
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while for shorter timescales, significant predictions are confined to a narrower window ranging
from −180 ms to 790 ms. Intriguingly, we observed that short timescale information is not only
processed in the vicinity of word onset but also at more distant time points.

These observations underscore the parallels and discrepancies between computational mod-
els and the neural mechanisms of the brain. As word embeddings are used more as in silico models
of semantic representation in the brain, a more explicit consideration of timescale-dependent
processing enables more targeted explorations of language processing in humans and machines.

1. Introduction

Language, at its core, is a hierarchical system in which smaller units combine into larger
units. In spoken language processing, phones combine into phonemes, which combine
into meaningful morphemes/words, which further combine into phrases, sentences,
paragraphs, and passages (and similarly for written language). Psycholinguists have
studied the human mind to define the mechanistic processes that underlie linguistic
processing at multiple timescales: words, sentences, and longer-range contexts (Traxler
2011). Brain imaging has shown that the brain tracks language processing via numerous
cognitive mechanisms (Ding et al. 2016; Lerner et al. 2011), which relate hierarchical
language processing to different timescales.

Here, we also study the timescales of natural language and the corresponding
processes in the human brain. However, unlike previous work, we use high temporal
resolution electroencephalography (EEG) recordings alongside a data-driven method
for defining timescales. When studying language in the brain, timescales have been
operationalized in different ways. For example, in Jain and Huth (2018) and Chen et al.
(2024), timescales are defined as the sensitivity of language models to words in specific
ranges of prior context (i.e., 32–64, 64–128 words). Contextual representations have
been used in prior work to study correspondences between linguistic timescales and
functional magnetic resonance imaging (fMRI) responses (Mahto et al. 2020; Jain et al.
2020; Vo et al. 2023). In our analysis, we derive language representations from a model
that preserves contextual information at different rates, and then relate those represen-
tations to human brain activity. We use a multi-timescale long short-term memory (MT-
LSTM) model (Mahto et al. 2020; Jain et al. 2020), which uses a data-driven definition of
timescales (see Section 2.3). The MT-LSTM has continuously parameterized timescales
that change smoothly in order to increase sensitivity to information from the word
level to the paragraph level and beyond. We partition these MT-LSTM units based on
their sensitivity to (i) long, (ii) medium, and (iii) short timescales in a data-driven way.
Our results add to previous fMRI findings by combining MT-LSTM representations
with higher temporal resolution EEG recordings, which allow for a more fine-grained
analysis of the timescales of language processing.

Our analysis aims to identify and characterize brain networks with temporal sensi-
tivity corresponding to the timescales of language represented by the MT-LSTM. We use
12-minute EEG recordings (Bhattasali et al. 2020) collected while participants passively
listened to the first chapter of Alice in Wonderland. We used a decoding framework,
training L2-regularized ridge regression models (Hoerl and Kennard 1970) to robustly
predict MT-LSTM representations from EEG data. We used the temporal generalization
method (TGM) (Dehaene and King 2016; Fyshe 2020) to track the temporal stability
of the brain’s timescale representations during word processing. We then performed a
spatial analysis using sensor subsets (Rafidi 2018) to find the brain areas responsible for
successful decoding of MT-LSTM representations. Our analysis reveals several insights
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into the brain’s temporal sensitivity to the varying timescales of language. Specifically,
we show that:

1. Information pertaining to different language timescales can be decoded
from small windows (100 ms) of EEG signals.

2. Brain responses predict MT-LSTM embeddings both before and after
word onset.

3. As the timescale increases, MT-LSTM embeddings can be decoded from
EEG for a longer time window around word onset.

4. As shown in previous work (Huth et al. 2016; Lerner et al. 2011; Jain and
Huth 2018), word representations can be localized throughout the brain,
but at time points further from word onset, sensors over the temporal
lobe and prefrontal cortex give best decoding performance.

To the best of our knowledge, ours is the first study to examine the connection between
brain responses and timescale-tuned word embeddings using temporally rich neural
recordings.

2. Background

2.1 Timescales in Human Language Comprehension

Temporal Receptive Windows (TRWs) describe the sensitivity of a neuron or a cortical
microcircuit to a specific temporal window (Hasson et al. 2008), a concept that has
been extended to study language in the brain. In studies of the brain’s sensitivity to
language timescales, stimuli are selected such that they exhibit a range of linguistic
information requiring processing at multiple temporal levels (Xu et al. 2005; Lerner et al.
2011; Brennan and Pylkkänen 2012). Brain recordings related to specific timescales are
then extracted and analyzed. Previous paradigms assume that text scrambled at one
timescale will disrupt brain processes sensitive to the longer timescales, while leaving
processes relating to the shorter timescales intact. For instance, random word lists
activate sub-networks that process sounds and words, but not phrases or sentences (ten
Oever et al. 2022). Based on this idea, Xu et al. (2005), Lerner et al. (2011), and Farbood
et al. (2015) used fMRI to find that a hierarchy of brain areas corresponds to increasing
TRWs, extending from early auditory cortices along the superior temporal gyrus up to
the intraparietal sulcus, as well as highlighting the role of the frontal cortex in sentence
and paragraph level comprehension. Blank and Fedorenko (2020) further argued that
left inferior frontal and temporal language regions cannot distinguish timescales longer
than sentences and do not have distinct stages for this hierarchy. Using a more tem-
porally precise method, Brennan and Pylkkänen (2012) discovered that the difference
between sentence and scrambled word lists in magnetoencephalography (MEG) for
language-related brain areas are concentrated at 250–300 ms after word onset.

Another approach is to record neural oscillations in the brain and test for their
correspondence to the timescales of the language processing hierarchy. Ding et al. (2016,
2017) devised specific linguistic stimuli to test this: every word is its own unit; every
2 words form a phrase; every 2 phrases form a sentence. When they fixed the word
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presentation rate to 4 Hz, they found 3 entrained frequencies from EEG and MEG
that correspond to the word (1 Hz), phrase (2 Hz), and sentence (4 Hz) units in their
linguistic stimuli. Keitel, Gross, and Kayser (2018), Kaufeld et al. (2020), and Meyer
(2018) introduced the framework of oscillations for chunking (i.e., oscillations mark
the edge of timescales), and Kazanina and Tavano (2023) discussed some potentially
theoretical challengers (e.g., various wavelengths for the same linguistic unit).

Multi-timescale processing has also been proposed for other non-language brain
functions, such as vision (Hasson et al. 2008; Honey et al. 2012; Murray et al. 2014;
Zeraati et al. 2023), music perception (Farbood et al. 2015), memory (Gao et al. 2020),
and decision-making processes (Spitmaan et al. 2020). Taken together, multi-timescale
processing can be postulated as one of the brain’s global organizing principles (Raut,
Snyder, and Raichle 2020). Given that evidence shows linguistic representations can be
found in many parts of the brain (Huth et al. 2016), the timescale structure of other
cognitive functions may also be involved in language comprehension.

2.2 Encoding and Decoding Methods

Encoding and decoding methods (Mitchell et al. 2008; Huth et al. 2016) are one way
to study the flow of information during cognitive processing. Such methods can help
to resolve questions of linguistic representation in the brain by learning a mapping be-
tween an abstract language property and brain responses to stimuli with that property.
A typical encoding / decoding framework consists of 4 steps:

1. High-dimensional vectors are derived to represent properties in the
stimuli.

2. These vectors are paired to the brain responses recorded when a person
processes the corresponding stimuli.

3. A model is trained to learn a mapping between a subset of pairs.

4. A metric (i.e., accuracy) is computed on held-out pairs in a test set.

In encoding, step 3 requires that the stimulus property vector is used to predict
brain responses, while decoding involves the opposite direction, predicting the stimulus
property vector from brain responses. We assume the common principle that successful
decodability of a stimulus from neural data implies the presence of stimulus-relevant
information in that signal (Reddy and Wehbe 2021; Kriegeskorte and Kievit 2013; la Tour
et al. 2022). If the activity in some brain regions can predict stimulus properties well
during a period of time, it indicates that the property (or a correlate of it) is processed
in those brain regions during that time period.

Decoding models have also been used to explore language processing timescales.
By mapping brain responses to linguistic representations, researchers have identified
the contributions of various brain areas to corresponding timescales during comprehen-
sion of words (Mitchell et al. 2008; Huth et al. 2016), phrases (Fyshe et al. 2019), syntax
and parts-of-speech (Hale et al. 2018; Murphy et al. 2022), sentence segments (Wehbe
et al. 2014a), and complete sentences (Pereira et al. 2018). Although short timescales can
be modeled by averaging or concatenating non-contextual word vectors for each of the
constituent words, longer timescales require a more sophisticated approach.
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In our work, we represent longer timescales using the MT-LSTM, a variant of the
LSTM model. LSTMs are trained to simply predict the next word in a sequence, yet
the models encode numerous additional linguistic features. Visualization and ablation
studies have found that some neurons correspond to multi-level linguistic features,
such as suffix starts, word endings, and long-range subject-verb dependency (Linzen,
Dupoux, and Goldberg 2016; Gulordava et al. 2018; Kementchedjhieva and Lopez 2018;
Lakretz et al. 2019; Chien and Honey 2020). Modifying the structure or parameters of
the neurons to induce sensitivity to long timescale information can improve model
performance (Lin et al. 2015; Hwang and Sung 2017; Singh and Lee 2017; Shen et al.
2018; Mahto et al. 2020). For larger models like GPT (Radford et al. 2018) and BERT
(Devlin et al. 2019), their layered structure shows a hierarchy of timescales (Goldstein
et al. 2022a), and linear filters can be applied on the representation to separate timescale
information (Chen et al. 2024). Timescales have been extracted from RNNs (Chien and
Honey 2020), LSTMs (Jain and Huth 2018; Jain et al. 2020), GPT (Caucheteux, Gramfort,
and King 2021; Goldstein et al. 2022b; Heilbron et al. 2022), and BERT (Chen et al.
2024) and compared with brain responses to language. Brain areas found to be sensitive
to different timescales are consistent with neurolinguistic analyses of scrambled text
processing.

One limitation of the aforementioned studies is that most use fMRI recordings
to analyze timescale representations. Because normal speech is faster than the time
required to acquire a full fMRI volume (∼ 2 seconds), word representations need to
be downsampled to correspond to the sampling rate of fMRI. This results in a loss of
information and a temporally imprecise picture of brain processing. This hinders our
ability to address certain linguistic questions with temporal precision—for example,
determining the function of neural oscillations in processing linguistic elements of
different timescales (Kazanina and Tavano 2023).

2.3 MT-LSTM Model

To derive timescale-sensitive linguistic representations, we used the MT-LSTM model
proposed in Mahto et al. (2020). This model is smaller in scale than the more recent
Transformer models, which makes it easier to train, especially in cases where limited
linguistic materials exist to train and validate the model. The MT-LSTM model has a
distribution of timescales allowing the model to take into account the time-varying char-
acteristics of natural language. The timescales in the model are defined parametrically,
and the model is induced to capture information carried over by these timescales for
prediction. The embeddings from various timescales can be extracted directly from the
model in order to derive a mapping from brain responses to these embeddings.

Tallec and Ollivier (2018) discovered that the persistence of information in the LSTM
contextual representations follows an exponential decay curve, and Mahto et al. (2020)
further solidified this multi-timescale property by modifying the forget gate bias bf
of individual LSTM neurons. A neuron with a more negative bf tends to up-weight
new inputs to the LSTM cell state and thereby model shorter timescales. In contrast,
a more positive bf results in the neuron preserving cell state from prior tokens over
newly processed inputs, thereby resulting in sensitivity to longer timescales. Based on
the decay rate of information, the timescale T, or forgetting time of an LSTM neuron
can be computed as:

T = 1
log(1 + e−bf )

(1)
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This formula means that we can induce sensitivity to various timescales by modu-
lating the forget gate biases with timescale-specific values of T.

Besides the explicit definition of timescale, the MT-LSTM model has 2 other advan-
tages. First, the MT-LSTM is inspired by a property of natural language: The mutual
information between tokens follows a power law decay as distance increases (Lin
and Tegmark 2016). However, the decay rate in LSTM units is exponential. To make
exponential LSTM units fit the observed power law, the MT-LSTM timescales are altered
to follow an inverse gamma distribution. Mahto et al. (2020) tuned the decay parameter
to optimize the accuracy of next token prediction. The best parameter setting results in
a range of timescales from 0.17 words to 360k words.

Second, MT-LSTM units have been shown to correspond with linguistic features. Vo
et al. (2023) probed the MT-LSTM model to detect the extent to which timescale-related
information in the model was related to various linguistic features. For example, part-
of-speech is found to be best represented at word and sentence-level timescales, while
document-level information (e.g., topics) corresponds best to paragraph and multi-
paragraph timescales.

In summary, the embeddings of different timescales in the MT-LSTM model can be
used as a proxy for language representations at various timescales. These timescales are
explicitly defined and past work has shown that different types of linguistic information
are represented at each timescale.

3. Methods

3.1 EEG Data

We used the Alice dataset (Bhattasali et al. 2020), a public dataset containing EEG signals
collected while participants (n = 49) passively listened to Alice’s Adventure in Wonder-
land Chapter 1. The EEG data were recorded at 500 Hz with 59 channels (reference
channels excluded) using the Easy-M10 montage. Each recording session lasted for
12.4 minutes and contains 2,129 labeled word tokens. We applied further preprocessing
(see Appendix A) to the data to remove artifacts and chose 19 participants (3 male,
age range 18–25 years) for the final analysis. Participant exclusion criteria are given in
Appendix A. A temporal window of [−2, 4] seconds around the onset of each word of
interest was extracted and linear detrending was applied on the epoched EEG data.

3.2 MT-LSTM Embeddings

Model Structure. Our MT-LSTM model follows Jain et al. (2020), who use a stateful LSTM
with three layers. This model takes in a 400-dimension word embedding and outputs a
vector of the same dimension. The first two layers each have 1,150 neurons, and the third
has 400 neurons. Before the LSTM layers, the model has an embedding layer, which
encodes each word token in the vocabulary from an index value into a 400-dimension
word embedding. The same mapping is used to convert the 400-dimension output of
the LSTM into a probability distribution over possible next tokens in the vocabulary,
from which prediction loss and perplexity can be calculated.

Model Parameters. In Layer 1 of the LSTM, immediately after the input embedding layer,
half of the 1,150 neurons are assigned a timescale of T = 3 and half with T = 4. These
timescales ensure Layer 1 only processes short timescale information. In Layer 2, the
timescales of the 1,150 neurons follow an inverse gamma distribution with α = 0.56
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and β = 1. In both Layer 1 and Layer 2, the forget gate bias bf of each neuron is set to its
assigned timescale according to the following equation

bf = − log(e
1
T − 1) (2)

which is derived from Equation (1). The input gate biases bi are set to be the negated
value of the forget gate biases (i.e., bi = −bf ) so that timescale sensitivity is controlled
solely by the settings of the forget gate parameters. All other parameters, including
those in Layer 3, are randomly initialized from a uniform distribution between [−0.1,
0.1] and optimized during training.

Training. We trained the MT-LSTM with Stochastic Gradient Descent (Amari 1993). In
the pretraining stage, we used the Wikitext-2 dataset (Merity et al. 2017) (following
Mahto et al. 2020) to train the MT-LSTM model for 1,600 epochs.

Fine-tuning. For fine-tuning, we constructed a Lewis-Carroll Set (LC set) with 3 books,
Alice’s Adventures in Wonderland (“Alice in Wonderland”), Through the Looking-Glass, and
What Alice Found There, and additionally Sylvie and Bruno from Project Gutenberg. The
data were parsed with the spaCy toolbox (Honnibal and Montani 2017) and all punc-
tuation tokens were removed. We selected Chapter 1 of Alice in Wonderland (stimuli of
Alice dataset) to be the test set (2.1K tokens) because EEG recordings were collected for
this portion of the dataset. Chapters 2–3 were selected as the validation set (3.9K tokens)
because they are likely the most similar to Chapter 1, and thus most representative for
the chosen test set. All other text was selected to be training data (115K tokens) to build
the token vocabulary. The vocabulary contained 7,006 unique tokens and covered 2,052
of the 2,129 tokens (867 of the 914 lexical tokens) in the test set.

To train using the LC dataset, we modified the model vocabulary to match this
dataset and fine-tuned the model for another 20,000 epochs. The training results for
multiple models were stable with average perplexity 83.57± 0.82 for the test set. We
chose the model with smallest perplexity on the validation data to produce timescale-
tuned embeddings.

3.3 Token Selection

In order to produce multi-timescale contextual word embeddings, we used the MT-
LSTM model embeddings to represent wt. After inputting token wt−1, we recorded vt,
the hidden states of layer 2 as shown in Figure 1. Each vt has a dimensionality of 1,150.
Because we are interested in how semantic representations of context in the model
predict the next token, we omit function words (e.g., and, to, it) from the decoding
analysis, though they were still used during the training of the MT-LSTM model. We
chose 800 from the 914 lexical words in the test set that were:

• Not at the beginning of the story or the end of the story, in order to
decrease the EEG artifacts caused by inadaptation to the experiment at
the beginning, and fatigue at the end.

• Not proper nouns (e.g., names), as such tokens have limited coverage in
small datasets and are rarely updated from random initialization,
resulting in a poorer semantic representation.
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Figure 1
The diagram for the MT-LSTM model. The model has 3 LSTM layers. The encoder and the
decoder share weights. To generate the representation for word wt, we sequentially supply word
w1 through wt−1 to the model, from which the model produces a prediction for w′t. For our
analyses, the representation for word wt is the output of the second LSTM layer (vt), which is
extracted after the model processes wt−1.

• Not following the “unknown” token (<UNK>)1 because the <UNK>
token amalgamates semantic information over all unknown words,
which will negatively affect the representation for the word of interest.

3.4 Decoding Method

Because we want to analyze the EEG’s correspondence with each of the 1,150 MT-
LSTM dimensions, we trained a decoding model to predict word embeddings from
the EEG data. We then divided the embedding dimensions into groups based on their
behavior during text processing (see Section 4.2) and measured the average decodability
of each group. Averaging decodability improves signal-to-noise ratio (SNR), giving a
better picture of the relation between MT-LSTM timescales and the brain’s processing
of language.

EEG data have high temporal resolution, allowing us to train multiple decoding
models using different time windows of EEG data to produce a timeline of decoding
performance. We selected 100 ms sliding windows (50 time steps) with a shift of 10 ms
(5 time steps) and trained a separate decoding model with each window of data. High
decoding performance in a specific temporal window implies that the brain responses
at that time are sensitive to the corresponding timescale-tuned word embeddings.

3.5 Ridge Regression Model

Our training dataset consists of EEG windows (input) and word embeddings (target)
pairs, D = {Xi, Yi,j}, where Xi ∈ R2950 represents one flattened EEG window (50 time
steps × 59 electrodes) and Yi,j ∈ R is a scalar that represents the jth dimension of the ith
word embedding. We followed common convention and used a L2-regularized (Ridge)

1 If a word is presented to the model that was not in the training vocabulary, it is assigned the label of
<UNK> (unknown).
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regression model to learn a mapping between EEG responses and word embeddings.
We learn a linear mapping Wj ∈ R2950×1 using Equation (3), independently for each
word embedding dimension (N = 1,150). Collecting the models for each dimension of
the word embeddings into a matrix, we can specify the calculation as the following,
where λj represents the ridge penalty for dimension j.

Wj = arg min
Wj

{
∥∥Yi,j − XiWj

∥∥2
+ λj

∥∥Wj
∥∥2} (3)

A separate model Wj was independently trained and evaluated for each dimension
j of the word embeddings. A depiction of this training procedure is given in Figure 2.

3.6 Training and Evaluation Paradigm

We evaluated the model using 10-fold nested cross-validation. The cross-validation was
repeated 10 times with distinct random partitions of data. Using the predictions from
each of the 10× 10 folds we calculated the Pearson correlation between the true and
predicted MT-LSTM embedding and reported the average correlation over all folds.

Figure 2
An example of one training fold, evaluating and testing a decoding model on one time window.
The numbers in the figure show the dimension of each matrix. Divide: Data are split into train
and test sets of size 720 and 80, respectively. EEG data are shown in purple, word embeddings
are green. Train: We train a ridge regression model (WRidge, gray) to predict word embeddings
from EEG. For brevity, we omit the step of independent regularization for each dimension. Test:
WRidge is applied to test (hold-out) EEG data to predict the corresponding MT-LSTM
embeddings. Evaluate: For each dimension, a correlation value (c, pink) is calculated between
predicted embeddings (ypredict, blue) and true embeddings (ytest, green).
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Figure 2 gives an overview of the procedure for one cross-validation fold. Data
were divided into a training and test set; EEG data were normalized to have mean
zero and standard deviation of one. We used Leave-One-Out Cross-Validation to select
the best ridge regression hyperparameter (λ) during training. We computed decoding
performance for every λ, and used the best performing λ to train one model on all the
samples in the training set. The model was evaluated on the test set defined during the
10-fold cross validation process and we computed the Pearson correlation between true
and predicted embeddings.

3.7 Temporal Generalization Method (TGM)

In the above analyses, for each time window of EEG signals, we trained a separate
ridge regression model to predict individual dimensions of the MT-LSTM embedding.
However, that performance curve does not reflect whether the underlying regression
models at different time points are leveraging similar patterns in the EEG data. We used
TGM (Dehaene and King 2016; Fyshe 2020) to address this question.

Instead of using training and test samples from the same time window, the TGM
evaluates model predictions by testing samples from all time windows with respect to
a fixed training window. With N time windows, the TGM produces a N ×N dimension
matrix that illustrates how stable different temporal windows are with regard to the
learned model. If models trained on one time window can be generalized to another
time window, the brain’s language representations can be inferred to be similar. Con-
versely, if models trained on different windows have good individual performance
but cannot generalize to other windows, it suggests a change in the brain’s language
representations across time.

3.8 Sensor-Subset Analysis

This analysis was used to determine which brain areas contribute most to the perfor-
mance of the decoding model. The training process was the same as in Section 3.6,
but we used a subset of EEG sensors to train the model. For this analysis, a sensor
subset consists of a central sensor and all adjacent sensors according to the Easycap-M10
montage. The sensor subsets provide more stable results for comparing the contribution
of different brain areas by diminishing the influence of noise in a single channel. For
each specified timescale of interest, we plotted the test correlation for each sensor on
the scalp topography with the MNE toolbox (Gramfort et al. 2013).

3.9 Significance Testing

To assess if decoding results are significantly above chance, we performed a permuta-
tion test analysis. Specifically, for 100 iterations, we shuffled the rows of the MT-LSTM
embedding matrix such that all connection between word identity and associated
embedding is removed. For each of our proposed analyses, we ran permutation tests
with different random seeds and followed the same analysis procedure as for the non-
permuted data. We used kernel density estimation with a Gaussian kernel (Chen 2017)
to generate a null hypothesis distribution from 100 permutation test results and used
the null distribution to calculate a p-value for the non-permuted assignment. We used
the Benjamini-Hochberg-Yekutieli False Discovery Rate (FDR) correction (Benjamini
and Hochberg 1995) with a family-wise error rate of α = .05 to correct for multiple
comparisons.
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4. Results

4.1 Analysis 1: Decoding MT-LSTM Embeddings

We used the experimental procedure in Section 3.6 to explore whether EEG can predict
the contextual MT-LSTM embeddings, considering all timescales at once. Recall that,
for each word, the MT-LSTM hidden state vt is the intermediate output of predicting
the next word wt (see Figure 1). Therefore vt contains some semantic information about
word wt. We expected that the MT-LSTM embeddings would be decoded from EEG
after word onset. Additionally, the MT-LSTM model has processed words w1 through
wt−1, so it has captured some essence of the word’s context, reflected in vt. This contex-
tual information is expected to be processed by the brain in the vicinity of wt, so we also
expect to observe accurate decoding performance before word onset due to this overlap
in information.

The result for decoding MT-LSTM embeddings is shown in Figure 3. As expected,
the peak decoding performance appears around word onset. The range is from 170 ms
before the onset to 700 ms after onset. This range is wider than the [0, 400] ms period
reported in Wehbe et al. (2014b), who used word embedding vectors to predict MEG
signals (i.e., encoding) during a controlled reading paradigm. This indicates that the
EEG recordings have captured contextual representations that are predictive of the MT-
LSTM embeddings. We also found above chance decoding performance at time points
distant from word onsets [−2, −1, 1.2, 2.1, 4] s. This suggests that the more abundant
contextual information in the MT-LSTM embeddings correlates with EEG signals far
from the onset of the word of interest, during continuous speech processing.

Figure 3
Average correlation between true embeddings and predicted embeddings for MT-LSTM
embeddings. Each data point on the line represents the decoding performance of a 0.1 s time
window (the point marks the end of the time window). The dots above the x-axis represent
significantly above chance predictions (p < 0.05, FDR corrected).
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4.2 Selecting Subgroups for Different Timescales

In the previous section, prediction performance was derived from the average effect
over all MT-LSTM embedding dimensions. However, when considered in aggregate,
we cannot distinguish which dimensions contribute most to successful decoding. In
the following analysis, we explored the prediction performance for different timescales
independently. If the prediction is above chance at one time point for a particular
timescale, it may indicate that the information of this timescale is similar to what is
being processed in the brain.

Recall that MT-LSTM timescales are determined by the forget gate biases. Because
one MT-LSTM dimension carries limited noisy information, we cannot analyze each
dimension independently. Therefore, we selected subsets of MT-LSTM neurons and
analyzed them as a group. The 1,150 MT-LSTM dimensions have ordered timescales
because the forget gate biases are sampled from a fixed range of values according to
the inverse gamma distribution, and so neurons with adjacent indices are tuned to
similar timescales. We can create contiguous groups of dimensions and then average
the prediction performance to extract related properties of the group.

To partition all 1,150 dimensions into groups, we considered the autocorrelation for
each dimension of the hidden state. Before a lexical token wt is input into the MT-LSTM,
the hidden state is vt. After proceeding to the next n tokens, the hidden state becomes
vt+n. We calculated the correlation between dimensions of vt and vt+n across time,
namely the autocorrelation. A plot of autocorrelation values is given for the dimensions
of v and number of words delay n in Figure 4, showing the stability of each dimension.
To reduce noise, we average adjacent groups of 5 dimensions. We partitioned MT-LSTM
embedding dimensions into 3 groups based on the patterns on autocorrelation plot
(Figure 4): The first group (1–8) has a very high (>0.8) autocorrelation (7K < T < 360K).
The second group (8–400) has a relatively stable autocorrelation that is around 0.6,
regardless of number of words delay (7.4 < T < 7K). The third group (400–1,150) has
an autocorrelation that steadily decreases from around 0.6 to 0 both as the timescale

Figure 4
The autocorrelation of all 1,150 MT-LSTM hidden states with delay of up to 20 words. We used
this autocorrelation to partition the MT-LSTM dimensions into Long, Medium, and Short
timescales (black dashed line), and the Short part further into S-Long, S-Medium, and S-Short
timescales (gray dashed line).
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decreases and number of words delay increases (T < 7.4). We denote these groups:
Long, Medium, and Short timescale groups, as shown in Figure 4.

The short timescale group is quite large (750 units), and shows a fairly linear
decrease in correlation (also see Figure C.1), implying we should consider its units in a
more fine-grained way. We further separated the short timescale into 3 equal subsets as
shown in Figure 4. In this partition, the short-long (S-Long) timescales are dimensions
400 to 650 (2.7 < T < 7.4). The short-medium (S-Medium) 650 to 900 (1.2 < T < 2.7),
and the short-short (S-Short) 900 to 1,150 (T < 1.2).

4.3 Analysis 2: Decoding Partitioned MT-LSTM Embeddings

Based on the grouping of MT-LSTM embeddings defined in Section 4.2, we can investi-
gate which timescales support good decodability. Figure 5 and Figure C.2 show the av-
erage decoding performance with the unbalanced timescale groups. The long timescale
group (Figure C.2) has obvious oscillations. The maximum correlation is larger than 0.05
and the minimum is−0.15. However, the results are not significant. For the medium and
short timescales (Figure 5), there is no rapid change in prediction performance along the
timeline. The medium timescale is only significant in a small period (360 ms) after the
onset of the word with a correlation peak of 0.03. The short timescale has the highest
peak (0.05) and widest range (1 s) of significant correlation around the onset of word.
The significant correlation for the short timescale also spans across the timeline. To
conclude, the decreasing decodability for longer timescales goes against our hypothesis
that longer MT-LSTM timescales are indicative of longer processing time in the brain.
We discuss this point further in Section 5.4.

Figure 5
Decoding results based on dimensions extracted from a specific partition of the corresponding
MT-LSTM representation. Each data point on the line represents the decoding performance of a
100 ms time window (the point marks the end of the time window). The dots above the x-axis
represent significantly better than chance predictions (p < 0.05, FDR corrected).
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4.4 Analysis 3: Decoding Fine-grained MT-LSTM Embeddings

As described in Section 4.2, to thoroughly explore the short timescale group, we divided
it into 3 equally sized subsets (S-Long, S-Medium, and S-Short). The three colored lines
in Figure 6 show the corresponding decoding results of those timescales, and the dots
along the bottom of the graph indicated above chance decodability. All timescales have
a peak around word onset. However, the ranges of above chance predictions differ. The
S-Short timescales show significant decodability only around the onset from−180 ms to
790 ms, while significant decodability of the S-Long timescales are widely spread from
−2 s to 2 s. The paired cluster permutation test (Maris and Oostenveld 2007) (paired
based on the same split of train and test sets during cross validation) contrasting S-
Long and S-Short decodability between −1 s and 2 s shows that the 2 conditions are
significantly different around the onset (p = 0.001). The S-Short timescale decodability
has several peaks between 0 s and 1 s, but the S-Long timescale decodability fluctuates
less. In general, the timing of the above chance points for each timescale corresponds
with the timescale length in the MT-LSTM model.

Although the long timescale group produces the most reliable predictions at distant
time points, other timescale groups also produce reliable predictions. For the S-Short
timescale, above chance predictions also appear occasionally near [−1.5, −1.2] s. The
S-Medium timescale is similar to this pattern, but with more frequent above chance
predictions near [−0.8, −0.5, 1.2] s. The S-Long and S-Medium timescale groups also
show above chance prediction around 4 s after word onset, i.e. the information in
some short timescales reappears in the brain representations. This reappearance may
be caused by neighboring words that share mutual information with the center word,
but note that the decoding of non-contextual word vectors (Figure B.1) shows no

Figure 6
Decoding results for MT-LSTM embeddings based on the partition of short timescales. Each data
point on the line represents the decoding performance of a 100 ms time window (the point marks
the end of the time window). The dots above the x-axis represent significantly better than chance
predictions (p < 0.05, FDR corrected). The yellow shaded area shows the largest cluster where
S-Short has significantly different decodability from S-Long (p = 0.001).

1490



Ling, Murphy, and Fyshe Exploring Temporal Sensitivity in Brains and Language Models

above-chance decodability beyond 700 ms after word onset. Thus, this reappearance
may also indicate a difference between brain and MT-LSTM representations. We will
return to this point further in Sections 5.1–5.3.

4.5 Analysis 4: Temporal Generalization of Decoding Models

From the timescale analysis in Section 4.4, we see different prediction performance
for the S-Long, S-Medium, and S-Short timescales, and that the performance is above
chance for different durations. In this section, we use the TGM (Section 3.7) to investi-
gate the generalizability of a model over time. In a TGM analysis, a model trained on
one time point is evaluated at other time points. Recall that, if a model trained using
one window of EEG data can successfully predict MT-LSTM embeddings using data
from another time window, this indicates that the brain representations leveraged by
the decoding model are similar. We used this to guide an exploration of each period in
Figure 6 where multiple time points were significantly above chance.

We used the same partition of timescales used in Section 4.4, but changed the stride
of the sliding window from 10 ms to 50 ms to decrease the computation required to
generate the TGMs. The results and the FDR-corrected results for S-Long, S-Medium,
and S-Short groups are shown in Figure 7. In order to focus our discussion (and avoid
analyzing false positives), we only discuss clusters which are consistent across at least
two timescales (i.e., they appear at similar time intersections for at least two of S-
Long, S-Medium, and S-Short timescales). Because TGMs are often quite symmetric,
for brevity we will refer to only one of the two symmetric clusters, though the effects
are usually equivalent for the mirror image.

Figures 7a, 7c, 7e show a similar square-like pattern in the middle (black rectangles,
0 s–1 s on both train and text axes). This indicates that a model trained around word
onset generalizes well to similar time points in the following 1 second window. This
implies that the brain activity leveraged by the model is similar within this range. The
three columns show clear differences in the extent of temporal generalization across
time. For the S-Long timescale (Figure 7b), the small square is part of a band-like pattern
(brown rectangle,−2 s to 2 s on both train and test axes) that extends from prior to word
onset until 2 s after word onset. This symmetric pattern along the diagonal shows that
each model on the timeline in this [−2,2] s range can generalize in a 1 second window,
except for a brief period near 0 s (possibly due to a change in representation influenced
by word perception). These results indicate the persistence of the S-Long timescale
representations in the brain.

The TGM for the S-Short timescale (Figure 7e) shows a cluster from [−0.1, 0.75]s
(black rectangle) that is separated from nearby clusters. That is, the areas indicated by
the black rectangle and brown rectangle (around 2 s on both axes) are not connected,
implying that the brain processes S-Short timescales at times close to word onset. The
S-Medium timescale (Figure 7c) has a transitional form: There exists not only a square
resembling that seen in the short timescale (black rectangle), but also a faint band-like
pattern (brown rectangle, from 1 s to 2 s on both axes) reminiscent of the one seen for
S-Long.

The TGMs also show reliable predictions for distant time points (points far from
the diagonal). For the S-Short timescale (Figure 7e), The models generalize well when
training on windows around−1 s and testing on windows around 2 s (green rectangle).
However, when we train the models around −1 s or 2 s and test between 0 s and 1 s,
the models show a significantly below chance decodability (purple rectangles). For the
S-Long timescale (Figure 7a), the regions of below chance decodability are sustained
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Figure 7
Temporal generalization matrices for S-Long, S-Medium, and S-Short timescales. Top: All
correlation values in each TGM. Bottom: Same as above, but only with significant time points
colored (p < 0.05, FDR-corrected). Black rectangles: The clusters on the main diagonal, where we
train and test the decoding model around the word onset (0 s). Brown rectangles: The clusters on
the main diagonal, where we train and test the decoding model around 2 s after word onset.
Purple rectangles: The clusters where we train the decoding model around 1 s before or 2 s after
word onset and test around word onset (0 s). Green rectangles: The clusters where we train the
decoding model around 1 s before word onset, and test around 2 s after word onset.

longer with respect to models trained before −1 s and after 2 s, and tested between 0 s
and 2 s (purple rectangles). The S-Medium timescale (Figure 7c) is again a transitional
form between S-Short and S-long: It is similar to the short timescales but enlarges the
generalization window for distant time points (purple and green rectangles).

These results provide us with further evidence that the brain differentially processes
long and short timescale information in a way that resembles the MT-LSTM. As the
timescale increases, the representations in the brain become more persistent, and TGMs
show generalizability across longer time spans. However, the TGMs also show below
chance regions, indicating negated representations at distant time points compared to
around the onset. We will return to this in Section 5.3.

4.6 Analysis 5: Brain Areas Contributing to Decoding Performance

For this analysis, we trained decoding models using different contiguous sensor sub-
sets to investigate the contribution to decoding performance attributable to spatially
grouped brain regions. Figure 8 shows topographic maps of the decoding accuracy
at a few key time points which were selected based on reliable decoding accuracy in
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Figure 8
The topographic map at a few key time points for S-Long, S-Medium, and S-Short timescales. All
3 timescales show significant decodability at these time points, according to Figure 6. −1 s and
2.1 s are time points distant from the onset, while 0 s is the onset and 0.4 s and 0.6 s correspond
with the time for event-related potentials N400 and P600. Solid circles show significantly better
than chance predictions (p < 0.05, FDR corrected).

Figure 7. However, due to the low spatial resolution and high noise in EEG, one must
proceed with caution. We use these results only to produce some preliminary hypothe-
ses about the differences between long and short timescales.

At 0 s and 0.4 s, for all 3 timescales, we can significantly decode MT-LSTM embed-
dings at most sensors. The highest accuracy appears towards the frontal lobe from both
hemispheres. At 0.6 s, the areas appear towards the temporal lobe and prefrontal cortex.
These results correlate with the retrieval-integration cycle in Brouwer and Hoeks (2013),
in which the left posterior middle temporal gyrus retrieves word semantics and induces
a N400, while the left inferior frontal gyrus integrates sentences and induces a P600.
However, our results for [0, 0.4, 0.6] s and all 3 timescales in Figure 8 do not indicate a
laterality preference.

At 1 s before word onset (−1 s), for all 3 timescales, we can significantly decode
MT-LSTM embeddings at about half the sensors, with the highest accuracy consistently
concentrated over the temporal and frontal lobes. Similar to near the onset (0 s), the
results for −1 s and all 3 timescales in Figure 8 do not indicate a laterality preference.

At the time window furthest from word onset (2.1 s), we can see that the area for the
S-Short timescale is mainly above the right temporal lobe. The S-Medium timescale also
shows high decoding performance over the prefrontal cortex. This closely corresponds
to findings reported in Jain et al. (2020), in which auditory cortex (temporal lobe) prefers
shorter timescales, while the prefrontal cortex corresponds to longer timescales. How-
ever, for the S-Long timescale, we did not find significant decodability over prefrontal
cortex, instead, the above chance sensors are concentrated over the temporal lobes of
both hemispheres. This may be consistent with Jain et al. (2020), in that the temporal
lobes have a preference for a wider range of timescales than the prefrontal cortex.

These results show that the brain areas that track long and short timescale informa-
tion are distinct and correspond with previous findings from earlier research in fMRI
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(Jain and Huth 2018). However, due to the low spatial resolution of EEG data, we
cannot reliably attribute the source of decodability to more precise brain areas (e.g.,
the auditory cortex). Studies (Paulesu et al. 1997; Whitney, Jefferies, and Kircher 2011;
Hagoort and Indefrey 2014; Hertrich et al. 2021) have also shown that both temporal
lobe and prefrontal cortex are functionally heterogeneous and may involve multiple
levels of language processing. In addition, decoding at distant time points from word
onset (−1 s, 2 s) may also result from decoding neighboring words that share mutual
information with the center word. To conclude, these results hint at some possible
interpretation for the processing of timescale information in different areas of the brain,
but further work will be required to draw more spatially accurate conclusions.

4.7 Results Summary

From our analyses we conclude the following:

1. Information from multiple timescales can be decoded from small
windows of EEG (Analysis 1).

2. The Short timescales (T < 7.4) can be decoded consistently across the
EEG window, while the Medium timescale (7.4 < T < 7K) can be
decoded only for a short period after word onset (Analysis 2). This
motivated us to further analyze the subsets of the short timescale units
(S-Long, S-Medium, S-Short).

3. The brain’s representation for the S-Long timescale (2.7 < T < 7.4) is
stable between [−2, 2] seconds, except for a short period near word
onset. The representation for the S-Short timescale (T < 1.2) is stable only
between [−0.1, 0.75] s (Analysis 3, 4).

4. When models trained around distant time points (−1 s and 2 s) are tested
around word onset (0 s to 1 s), the models show a significantly below
chance decodability, suggesting an inversion of the representation during
language comprehension of the timescale information (Analysis 4).

5. Around word onset (0 s and 0.4 s), most sensors can decode S-Long,
S-Medium, and S-Short timescale representations. At distant time points
(2 s), S-Short timescales can be decoded from the right temporal lobe,
while S-Medium timescales can be decoded from the prefrontal cortex
(Analysis 5).

5. Discussion

Based on the results described above, we conclude with the following main
interpretations:

(1) The duration of decodability after word onset for 2 timescale subgroups,
S-Medium and S-Long, is mostly compatible with forgetting time in
MT-LSTMs. However, the duration of decodability after word onset for
S-Short timescale representations persist for longer in the brain than the
forgetting time in an MT-LSTM would suggest.
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(2) Successful decoding of timescale information before word onset shows
how mutual information is preserved from context before the onset of
upcoming word.

(3) The anti-correlated decoding results at distant time points in the TGM
may be explained by oscillations in the brain’s neural activity.

(4) We find little evidence for the decodability of Medium time scale
MT-LSTM neurons except for directly after word onset. This implies that
their role in the MT-LSTM may not be a good parallel to the brain’s
processing at medium timescales.

5.1 Decodability Windows Correlate with Timescales

Two MT-LSTM timescale sub-groups that we defined in our partition of Short MT-LSTM
neurons (S-Medium / S-Long) correspond to time windows of successful decodability
that match the timescale T (forgetting time)2 in the MT-LSTM. Considering the speech
rate for Alice dataset is approximately 3 words per second (Bhattasali et al. 2020), the S-
Medium timescale range, 1.2 < T < 2.7 corresponds with a range of 0.4 s to 0.9 s in the
speech stimuli, while the S-Medium timescale range, 2.7 < T < 7.4 corresponds with a
range of 0.9 s to 2.5 s in the speech stimuli. In Sections 4.4 and 4.5, we showed that the S-
Medium timescales are predictable using EEG until about 0.8 s after spoken word onset
and S-Long Timescales have near continuous decodability until about 2 s after word
onset. Therefore, the time lengths for decodability are compatible with the parameter-
tuned timescale (forgetting time) (Mahto et al. 2020) in the MT-LSTM model.

The S-Short timescale (T < 1.2) has the shortest period of continuous decodability
after word onset (790 ms). However, from Figure 6, this length of decodability is only
slightly shorter than that of the S-Medium timescale, and 790 ms is about twice the
forgetting time (T = 1.2 corresponds with 0.4 s in speech stimuli). This indicates a differ-
ence between the brain and MT-LSTM’s embeddings: In MT-LSTMs, the persistence of
information is determined by the neuron’s corresponding forget gate bias, which forces
the rapid decay of information in short timescales. However, the brain appears to retain
this information for longer than the length of two words. This extended decoding time
window supports the results reported by Sudre et al. (2012) wherein noun decodability
was sustained for at least 700 ms (end of their analysis window) after word onset. Fyshe
et al. (2019) found that when people read adjective-noun phrases, the representation of
the first word was sustained for nearly 1.5 s after the first word’s onset, well into and
past the presentation of the second word. Our work provides further evidence that the
brain retains the information in short timescales longer than the MT-LSTM model.

5.2 Significantly Above-chance Decodability Before Word Onset

In a language model, the ability to predict the next word is based on the principle
that words appearing together share mutual information. Similarly, the brain can also
predict future words based on mutual information from context. However, previous

2 In Vo et al. (2023), an LSTM unit with timescale T means it has the ability to remember information over T
words.
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work on the timing of next word prediction in the brain shows incongruent results:
Wlotko and Federmeier (2015) found that when fixing word intervals, it takes at least
250 ms after word onset for predictions to be detectable, though it sometimes happens
within a shorter temporal window. Goldstein et al. (2020) argue that when participants
are reading a story, neural responses correlating with upcoming word semantics can be
detected as early as 800 ms before word onset. Based on our separation of timescales,
for S-Long and S-Medium timescales, the mutual information which is critical for pre-
diction appears long before word onset, while for S-short timescales decoding accuracy
is most consistently above chance from 180 ms before word onset.

5.3 Inverted Representations Distant from Word Onset

Our TGM analysis in Section 4.5 shows a strong square of above-chance decoding on
the diagonal near word onset (black rectangles, Figure 7). However, when the TGM
is applied to windows at more distant time points, we observed significantly below-
chance results (purple rectangles, Figure 7). This inversion effect shows that the model’s
performance is significantly worse than chance, even when the same model has signifi-
cantly above chance accuracy when we train and test with the same time window. We
speculate that this could be a byproduct of neural circuits producing oscillations as they
handle information flow at different timescales (Jensen et al. 2014). For example, in our
results an oscillation of around 1 Hz could be related to S-Short timescale information.
This frequency cycles once per second and could account for the decoding performance
at −1 s, 0 s, 1 s, and 2 s. Ding et al. (2016, 2017); Keitel, Gross, and Kayser (2018); and
Kaufeld et al. (2020) discovered neural oscillations of different frequencies related to
processing words, phrases, and sentences, which further supports this theory. However,
further experiments with different settings (e.g., altering speech rate) will be required
to confirm this.

5.4 Limited Decodability of Medium Timescale Neurons

In Section 5.1, we discussed that the time range of successful decoding increases
with timescale length. However, in Figure 5 we found only a narrow band of
500 ms post word onset from which we could successfully decode Medium timescales
(7.4 < T < 7K). Mahto et al. (2020) found that ablating neurons of these timescales de-
creases the MT-LSTM’s performance in predicting the low-frequency words. Thus, these
neurons may store information related to low-frequency words. Chien et al. (2020) also
found some “integrator” neurons in their LSTM. Ablating these “integrator” neurons
only reduces the prediction accuracy for the last words in a sentence. These results
indicate that these neurons with special functions are less frequently activated than
other medium-timescale neurons (e.g., the “controller” neurons in Chien et al. (2020),
which reduce overall prediction accuracy when ablated. If the intervals between decod-
ability of the medium timescale neurons are longer than our test window (6 s, about 18
words), we cannot detect above chance decodability far from word onset. Therefore, for
medium timescales, further experiments may be required to more carefully explore the
decodability of subsets of medium timescale neurons further from word onset.

5.5 Limitations

In the decoding analysis described in Section 3.3, we discarded function words and did
not report decoding accuracy for them. Function words do carry semantic information,

1496



Ling, Murphy, and Fyshe Exploring Temporal Sensitivity in Brains and Language Models

however, they are frequent, and thus LSTM predictions for them are relatively easy and
often do not require extended context. Conversely, predicting content (non-function)
words requires the LSTM model to integrate a broader range of context. To include
function words would skew the results towards shorter contexts.

In Section 4.3, we partitioned the 1,150 MT-LSTM units unevenly into Long,
Medium and Short timescale groups with 8, 392, and 750 units. The Short timescale
group has the widest range of significant decodability across the timeline, while the
Medium timescale only showed decodability for 360 ms, and we were not able to decode
information in Long timescales. A possible concern is that our results seem to imply
that there is no corresponding Long timescale of information in the brain. However, in
our partition of timescales, even the shortest of the long timescale MT-LSTM neurons
has T > 7K, a timescale that is longer than our stimulus story (2.1K words). Thus, our
experiment was likely not the right setting to detect such long timescales, and future
work will be needed to explore longer stories.

Another concern related to the partitioning of timescales is that the range of signif-
icant decodability may be an artifact of unequal statistical power: a group with more
samples (MT-LSTM units) might result in better decodability. In Section 4.4, the S-Long
and S-Medium groups both have 250 units (fewer than 392 in Medium group), but they
have a wider range of significant decodability than the Medium group. This is evidence
that the reduced decodability of the Medium group is not an artifact of reduced sample
size compared to Short group. To further investigate this, we partitioned the Long and
Medium group into 2 parts, 0–250, and 150–400, which have the same sample size
(250) as the S-Long (400–650) group. The decoding results in Figure C.3 show that
equalizing the number of units does not change the decodability: The 0–250 group
shows significant decodability nowhere on the timeline (resembling Long timescale
group), and the 150–400 group shows significant decodability mainly around onset
(resembling Medium timescale group and having a narrower range than S-Long group).
These results all indicate that the range of significant decodability in Medium timescales
is likely not an artifact of the number of units.

In Section 4.4, the correlation values between the MT-LSTM embeddings and EEG-
decoded embeddings are very low. This could be due to multiple factors. The first factor
is the low SNR of EEG. In the dataset, the story was played only once to each participant,
so each word in the specific context was presented one time to each participant, and
we cannot average across words at analysis time. This negatively impacts the SNR
in the EEG data supplied to the decoding model. Another possible reason is that the
participants are listening passively to the story and the language model is simply
predicting the next token. Oota et al. (2022) show that the brain-model correspondence
is influenced by human and model tasks. Finally, there are also studies by Caucheteux
and King (2022) and Antonello and Huth (2024) who suggest there are significant
discrepancies between brains and models in the domain of language. These factors
likely all contribute to the lower decoding results, but it is difficult to determine the
extent to which each factor is responsible.

6. Conclusion

In this article, we explored the temporal sensitivity of language processing in the brain
using an MT-LSTM, a neural network model of language processing that explicitly
encodes varying timescales. Leveraging EEG’s high temporal precision, we examined
the relationship between short, medium, and long MT-LSTM representations and tested
when dimensions of these timescales could be decoded using windows of EEG around
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word onset. We explored the generalizability of these decoding models and found
evidence for both stability and negation of brain representations during the processing
of language. These preliminary results with high temporal resolution EEG data add
to an existing body of research, which has until now primarily used fMRI to study the
representation of linguistic timescales in the brain. Our results may inform the design of
future experiments to understand how multiple levels of temporally sensitive language
processing are represented in the brain.

Appendix A. Preprocessing EEG

Forty-nine native English speakers (14 male, aged 18–29 years) participated in the study.
Eight participants were excluded due to excessive noise. A further 8 were excluded due
to low comprehension questionnaire performance and 4 participants were excluded due
to data corruption issues during EEG acquisition. For each participant, we used the
following preprocessing method to remove noise and artifacts using the MNE toolbox
(Gramfort et al. 2013):

1. Re-referencing to the average of both mastoid electrodes.

2. Applied a [0.1, 100] Hz FIR band filter and a 60 Hz notch filter to remove
line noise.

3. Manual identification of bad channels (high impedance or noisy
segments).

4. Used Spherical Spline Interpolation (SSI) to repair bad channels.

5. Applied Independent Component Analysis (ICA) to identify and remove
ocular as well as other physiological artifacts (cardiac, muscular etc.)

As described in Section 3.3, we chose 800 tokens from 914 lexical words. For each
participant and each token, a −2 s to 4 s time window around word onset was selected.
Time windows were rejected if the maximum amplitude in this window was larger than
80 µV. For each token, the EEG was the average (across participants) of all remaining
instances of this token that were not rejected.

During this process, we found that the number of good segments for some partic-
ipants (n = 6) was smaller than 300. For some participants (n = 4), after averaging all
the good segments, average EEG signals deviated from baseline or showed obvious
alpha waves. These phenomena indicated the inattention of the participants or the
unsatisfactory quality of the data. Therefore, we also excluded these participants whose
data exhibited these effects.

Finally, each token used in our analysis consists of a 59 channel × 6 second time
window of EEG, averaged over all good segments for all 19 participants. A linear
detrending step is applied on every channel in the 6 second window in order to derive
the data matrix used in our analysis.

Appendix B. Decoding Non-contextual Word Vectors

The EEG dataset was collected continuously while participants were presented with
uninterrupted speech. Recorded EEG activity captures a broad range of activity in the
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Figure B.1
Average correlation between true embeddings and predicted embeddings for pretrained
Word2Vec vectors. Each data point on the line represents the decoding performance of a 0.1 s
time window (the point marks the end of the time window). The dots above the x-axis represent
significantly better than chance predictions (p < 0.05, FDR corrected).

brain, beyond specifically language processing. We performed a baseline analysis to
ensure the preprocessed EEG data contain decodable non-contextual semantic informa-
tion before we formally compare them with contextual embeddings tuned to different
timescales. We chose the 300-dimension pretrained Word2Vec vectors trained on the
Google News dataset using the Skipgram algorithm (Mikolov et al. 2013). Analyses are
identical to that described above for contextual embeddings. If decoding performance
is significantly better than chance around word onset, we can conclude that the pre-
processed EEG signals carry semantic information and it is appropriate to perform a
decoding analysis with timescale-tuned representations.

The result for decoding non-contextual word embeddings is shown in Figure 3. We
found that reliable predictions appear from 70 ms before the onset and last until 690 ms
after the onset. The curve has multiple peaks at 200 ms and 500 ms. This result shows
that non-contextual semantic information can be decoded from EEG signals around
word onset. Considering the average duration of a selected lexical word is about 391 ms
in Alice dataset, the period lasting to 690 ms indicate the brain’s further processing after
the offset of the spoken word.
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Appendix C. Supplementary Figures

Figure C.1
Autocorrelation of MT-LSTM hidden states with delay of 1 word and our partitioning of Short
timescales into S-Long, S-Medium, and S-Short timescales.

Figure C.2
Decoding results for MT-LSTM embeddings based on the partition: Long (0–8), Medium (8–400),
and Short (400–1,150). Each data point on the line represents the decoding performance of a
100 ms time window (the point marks the end of the time window). The dots above the x-axis
represent significantly better than chance predictions (p < 0.05, FDR corrected).
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Figure C.3
Decoding results for MT-LSTM embeddings based on a new partition for Long and Medium
timescales that ensures equal sample size (250): 0–250, 150–400, and 400–650 (The original
S-Long group). Each data point on the line represents the decoding performance of a 100 ms time
window (the point marks the end of the time window). The dots above the x-axis represent
significantly better than chance predictions (p < 0.05, FDR corrected).
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