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Abstract
This paper presents a study on Swiss-French sign language production in the medical domain. In emergency
care settings, a lack of clear communication can interfere with accurate delivery of health related services. For
patients communicating with sign language, equal access to healthcare remains an issue. While previous
work has explored producing sign language gloss from a source text, we propose to extend this approach
to produce a multichannel sign language output given a written French input. Furthermore, we extend
our approach with a multi-task framework allowing us to include the Unified Medical Language System (UMLS)
in our model. Results show that the introduction of UMLS in the training data improves model accuracy by 13.64 points.
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1. Introduction

In emergency care settings, there is a crucial need
for automated translation tools. Emergency ser-
vices often have to take care of patients who have
no language in common with staff, which nega-
tively impacts both healthcare quality and associ-
ated costs (Meischke et al., 2013). A lack of clear
communication can interfere with the prompt and
accurate delivery of care (Turner et al., 2019) in-
creasing the risk of erroneous diagnoses and se-
rious consequences (Flores et al., 2003). This is
particularly true for deaf people accessing health-
care services (Ji et al., 2023).

According to Kerremans et al. (2018), various
bridging solutions are currently used by medical
services. They mention the use of professional
or ad hoc interpreters, as well as plain language,
gestures, communication technologies, and visual
supports such as images or pictographs. In partic-
ular, in emergency settings where interpreters are
not always available, there is a growing interest in
the use of translation tools to improve accessibil-
ity (Turner et al., 2019).

In this paper, we aim at developing text to Sign
Language (SL) translation models, from French to
Swiss-French sign language (LSF-CH), for the med-
ical domain. The main goal of such systems is to
facilitate the communication with deaf and hard-of-
hearing patients in emergency settings. Due to the
lack of parallel resources to train such translation
models, we propose to leverage data in a relevant
domain based on the Unified Medical Language
System (UMLS) (Lindberg, 1990). We train trans-
lation models, combining UMLS-based data and
SL as targets and French written text as source, by
applying a multi-task learning approach introduced

Source
prenez-vous des traitements ?
are you taking any treatments ?

UMLS
You, Therapeutic procedure, Question

Sign Language

Glossary TRAITEMENT PLURIEL TOUCHER PT_PRO2SG QUESTION ATTENTE

Aperture Wide Wide Wide Wide Small Wide

Body Straight RotateLeft Straight Straight Straight Straight

Eyebrows Neutral Neutral Neutral Up Down Neutral

Gaze Neutral LeftDown Neutral Neutral Neutral Neutral

Head Neutral Neutral Neutral Neutral Neutral Neutral

Shoulder Neutral Neutral Neutral Neutral RaiseBoth Neutral

Mouthing trEtm9 C01_Puffed2 L06_o null null null

Figure 1: Example of proposed approach for multi-
task training of UMLS and SL Translation.

originally for multilingual Neural Machine Transla-
tion (NMT) (Johnson et al., 2017).

The main motivation behind applying multi-task
learning stems from the following research ques-
tion: does a multi-task system trained on both
UMLS and SL improve SL production in the medi-
cal domain compared to a mono-task system? Our
hypothesis is that UMLS-based data, which is easy
to create and expand due to its language indepen-
dence, can be seen as a semantic pivot and can im-
prove coverage for a low-resource target language
such as LSF-CH.

The remainder of this paper is organised as fol-
lows. In Section 2, we introduce the background
work and describe our approach for Sign Language
Production (SLP). The methodology employed in
our experiments is described in Section 3, followed
by the experiments and results in Section 4. Finally,
we provide an analysis of the results in Section 5
before presenting a few conclusions in Section 6.
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2. Sign Language Production

There are three main approaches to SLP: hand-
crafted animation, motion capturing and synthe-
sis from written notation (Esselink et al., 2024).
Our work focuses on synthesis from G-SiGML.
G-SiGML is an XML-based representation of the
physical form of signs based on Hamburg Notation
System for Sign Languages (HamNoSys, Hanke,
2002). It describes both the manual (hand) and
non-manual (body) features of the sign, named
channels. The SiGML format allows to animate
avatars. The production of animations from SiGML
was first presented by Kennaway (2003) and is used
in the JASigning platform (Elliott et al., 2010). Re-
cently, it has attracted new interests, with methods
to automatically convert video into SiGML (Skobov
and Lepage, 2020), conversion tools into BML (Be-
haviour Markup Language) and integration with the
new EVA avatar (Ubieto et al., 2024). Synthesis
from written notation has several advantages for
our context, in particular it allows fully-fledged an-
imation of any signed form that can be described
through the associated notation, without requiring
video corpora or expensive equipment. Several
experiments have been conducted on translating
corpora to SiGML using Statistical Machine Transla-
tion and more recently using NMT (Brour and Ben-
abbou, 2021). However, most of them were limited
to the gloss-based translation (Ebling, 2016).

In this work, we frame SLP as a machine trans-
lation task, where French serves as the source
language and generates a sign table as output, as
shown in Figure 1. The table represents the parallel
channels of the SL output (manual activities – de-
scribed as a sequence of “glosses” –, gaze, head
movements, mouth movements, etc.) (Rayner
et al., 2016). The table is used to generate SL in
the G-SiGML format which in turn allows to animate
the avatar. Creating this sign table requires both
human expertise and time. Experts must have a
comprehensive understanding of SL and be famil-
iar with the formal structure of SL tables and the
vocabulary. Our work aims at relieving the burden
of creating new sign tables by training a joint UMLS
and SL model.

3. Methodology

In this Section, we describe the mono and multi-
task approaches employed in this paper, as well as
the data used in our experiments.

3.1. Approaches
Two approaches were employed in our experiments,
a mono-task system (noted Mono), trained on SL
only as target, and a multi-task system (noted Multi),

combining UMLS and SL as targets. For the latter
approach, we added a special token at the begin-
ning of source sentences specifying which target to
produce, either UMLS or SL (Johnson et al., 2017).
Our rationale for this approach is to leverage pa-
rameter sharing in the decoder, aiming to enhance
SLP performances, while increasing the amount
of source data in French. As a comparison point,
we also trained mono-task and multi-task models
using the gloss channel only as target, instead of
the full sign table.

3.2. Data
Training data for UMLS and SL are synthetic data
generated from two different Synchronous Context-
Free Grammars (SCFG, Aho and Ullman, 1969)
which link French sentences to UMLS and sign
tables (Bouillon et al., 2021).
UMLS Data. The UMLS grammar (Mutal et al.,
2022) aims at generating parallel data which con-
sists in French sentences (medical questions and
instructions) aligned with their corresponding se-
mantic UMLS gloss. The semantic gloss con-
sists in an ordered sequence of concepts, com-
bining UMLS concepts such as findings, diagnostic
procedures, etc. with non-UMLS functional con-
cepts (“You” in the example in Figure 1) or utter-
ance modes (“Question”). The grammar has more
than 3, 000 rules, which expand into more than
15, 000 unique UMLS sequences. These UMLS
sequences are mapped to hundreds of French sen-
tences.
SL data. The SL grammar generates parallel data
that includes French sentences (medical questions
and instructions) aligned with the corresponding
SL table in LSF-CH. The sign tables were created
based on human SL videos (Strasly et al., 2023).
First, human video translations were created for a
selected subset of sentences to develop SL refer-
ence translations for the medical terms and struc-
tures. This first set of human videos was then used
as reference to productively create a larger cor-
pus of G-SiGML from the grammar. The parallel
corpus 1 with the human videos and their corre-
sponding G-SiGML was used to test the compre-
hensibility of avatar videos in the medical domain in
comparison with human videos (David et al., 2022).

4. Experiments and Results

This Section presents the experimental setup, in-
cluding the corpora used in our experiments, the
training procedure for the NMT models and the
results obtained.

1Available at https://
yareta.unige.ch/archives/
e93920a5-e5b8-47de-9979-d1fc594c068d

https://yareta.unige.ch/archives/e93920a5-e5b8-47de-9979-d1fc594c068d
https://yareta.unige.ch/archives/e93920a5-e5b8-47de-9979-d1fc594c068d
https://yareta.unige.ch/archives/e93920a5-e5b8-47de-9979-d1fc594c068d
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Data #Sents #Vocab
FR UMLS SL Gloss

UMLS 586k 4.3k 1.6k - -
SL 1.7m 1.0k - 1.1k 678

Inter 5.2k 1.0k 809 1.5k 966

Table 1: Number of segments and vocabulary sizes
(in thousands, denoted as “k”, or millions, denoted
as “m”) for sign language (SL), UMLS-based data
(UMLS), and the intersection (Inter). The vocab-
ulary size is indicated for the source (FR) and for
each target, namely UMLS-based data (UMLS),
sign language tables (SL), and gloss from the sign
table (Gloss).

4.1. Experimental Setup
For our experiments, we used the grammars pre-
sented in Section 3.2 to generate two datasets,
namely a dataset for French-SL and a dataset for
French-UMLS. Prior to training the NMT models,
punctuation marks on the source side were re-
moved to be consistent between the two datasets.
We transformed the SL tables into flattened se-
quences of column items. For the UMLS-based
data, we added commas between the semantic
concepts. To evaluate our models, we extracted
5, 192 segments from the intersection of these two
datasets. This portion of the corpus accurately
represents the coverage we aim to enhance in SL
translation. Finally, we extracted 3, 000 segments
for the validation set. Table 1 provides the segment
and vocabulary counts for each dataset.

4.2. Training Procedure
All the models presented in this paper are encoder–
decoder models based on the Transformer architec-
ture (Vaswani et al., 2017). We trained models from
scratch with the Marian toolkit (Junczys-Dowmunt
et al., 2018) using default parameters, except for
the learning rate.2 Models were trained until con-
vergence monitored by the BLEU metric (Papineni
et al., 2002) calculated on the validation set, with a
patience value set to 10 (i.e. early stopping after 10
consecutive non improving validation steps). In the
case of the multi-task approach, the two validation
sets were used to keep the best performing models
on each task.3 The vocabulary size was equivalent
to that of the target vocabulary for the decoder and
4, 000 tokens for the encoder. The source side of
the data was tokenized using BPE (Sennrich, 2017)

2The learning rate was searched within the following
values: {5e−6, 2e−5,3e−5, 3.5e−5, 4e−5, 3e−4, 4.5e−4}

3The models converged with high BLEU scores on the
validation data, reaching 96pts BLEU for sign language.

Task Model BLEU ↑ chrF ↑ TER ↓ Acc ↑

SLP Mono 80.43 86.47 16.45 30.41
Multi 84.13* 88.61* 14.72* 44.05

Gloss Mono 73.53 79.83 22.37 41.56
Multi 87.09* 89.40* 13.35* 77.75

Table 2: BLEU, chrF, TER and SL table accuracy for
system outputs on the test sets. Scores with * are
significantly better than previous rows with p < 0.01,
calculated using paired approximate randomization
with 10, 000 trials.

implemented in the Sentencepiece toolkit (Kudo
and Richardson, 2018), while the target sequences
was divided based on spaces. We conducted all
experiments employing three random seeds and
averaging the results measured by the automatic
metrics. This approach is intended to reduce the
variability of results inherent to individual models
randomly initialized.

Due to the size difference between the parallel
SL and UMLS-based corpora, we over-sampled the
latter 3 times to reach the size of the former. The
final evaluation of our models was conducted using
the following metrics: BLEU, chrF (Popović, 2015)
and TER (Snover et al., 2006)4. We used paired
approximate randomization with 10, 000 trials to test
the statistical significance of results (Riezler and
Maxwell, 2005). We also measured SL table ac-
curacy, which was calculated by comparing the SL
table produced by our models to the gold reference,
in order to determine how many generated full SL
tables were identical to the reference.

4.3. Results
Table 2 presents the test data results for all chan-
nels (SLP) and for the gloss channel only. For all
channels, the model trained with UMLS (Multi) out-
performed the model trained solely with SL (Mono)
by 3.7pts BLEU and 13.64pts SL table accuracy. In
comparison to models trained solely with the gloss
channel, we observed a greater improvement with
Multi over Mono of 13.56pts BLEU and 36.19pts
accuracy. These results also show that generating
the gloss channel is an easier task compared to
producing the whole sign table.

Table 3 presents accuracy results by channel.
We observed that the Multi model consistently out-
performed the Mono model across all channels,
in particular for the gloss and head channels by

4BLEU, chrF and TER were computed us-
ing the SacreBLEU 2.3.1 version of the li-
brary (Post, 2018). The signatures are:
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp
nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no
nrefs:1|case:lc|tok:tercom|norm:no|punct:yes|asian:no
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Model Gloss/Manual Aperture Body Eyebrows Gaze Head Shoulder Mouthing
Mono 37.54 46.48 45.80 43.07 46.21 37.31 44.34 41.30
Multi 52.41 54.66 54.43 50.75 52.21 49.35 50.04 46.05

Gain 14.87 8.18 8.63 7.68 6.00 12.04 5.70 4.75

Table 3: Accuracy for each model on the different SL channels: Gloss, Aperture, Body, Eyebrows, Gaze,
Head, Shoulder and Mouthing.

14.87pts and 12.04pts increase respectively in terms
of accuracy.

These results suggest that introducing UMLS in
the training data is beneficial for the coverage of
SL. To understand the gains of the multi-task over
the mono-task on the SL task, we will delve into an
analysis in the next section.

5. Qualitative Analysis

In this section, we perform a lexical analysis, fol-
lowed by an analysis of semantic patterns, impor-
tant for the domain. Finally, we comment on the
non-manual channels.

5.1. Lexical Analysis
We compare the output of the Mono and Multi mod-
els focusing on gloss items, extracting differences
at the lexical level when Multi output is correct
while Mono output is incorrect. The main lexical
improvement brought by the addition of UMLS dur-
ing training is related to temporal markers such
as jour (day), aujourd’hui (today), etc. The mono-
task model fails at producing correct gloss items for
these temporal terms in 800+ segments of the test
set. Another large set of lexical elements correctly
produced by Multi is related to medical terms, such
as psychose (psychosis), diarrhée (diarrhea), etc.
Mistakes made by Mono for these terms are critical
as they may carry health or safety implications.

5.2. Pattern Analysis
The multi-task system systematically outperforms
the mono-task for important patterns related to med-
ical instructions, for example “I will prescribe you
[treatment]” or “I will do an exam [scanner, radio,
etc.] of [body part]”. In the mono-task version, all
the translations of the pattern “I will prescribe you
[...]” contain the extra gloss element PT_PRO2SG
(you, agent or patient), used for example in ques-
tions (“Do you have pain”) (see Figure 2).

5.3. Non-Manual Channel Analysis
The gain in BLEU for Multi at the level of non-
manual channels is related to important SL features

source: je vais vous prescrire de l'aspirine
Mono: PT_PRO2SG ASPIRINE POUR-TOI PT_POSS1SG PRESCRIRE ATTENTE
Multi: ASPIRINE POUR-TOI PT_POSS1SG PRESCRIRE ATTENTE
reference: ASPIRINE POUR-TOI PT_POSS1SG PRESCRIRE ATTENTE

Figure 2: Example of different translations in the
Mono and Multi MT.

in the medical domain, for example sentiment inten-
sification or emphasis on specific manual sign. The
mono-task system has the tendency to overproduce
a neutral position of the body, while the multi-task
produces more variation. For instance, in “depuis
combien d’années prenez-vous de l’aspirine cardio”
(For how many years have you been taking cardio
aspirin?), “Rotateleft” indicates that the emphasis is
put on the sign for the medication (Gloss: MEDICA-
MENT) which becomes more visible due to rotation
of the signer’s body (see Figure 3).

Gloss: MEDICAMENT   COEUR   PT_PRO2SG  TOUCHER    DEPUIS   ANNEE_PL COMBIEN     QUESTION ATTENTE
Body: RotateLeft TiltBack Straight         Straight TiltLeft Straight      TiltForward Straight     Straight

Figure 3: Example of translation in the Multi MT.

6. Conclusion

This paper presented a multi-task learning ap-
proach to translate text into sign language en-
hanced using domain relevant data. To the best
of our knowledge, this is the first work on NMT for
multi-channel sign language production in Swiss-
French. Empirical results show that the introduction
of UMLS-based data for training improves the gen-
eration of SL globally in terms of accuracy. In partic-
ular, the additional data improve lexical and syntac-
tic coverage, and also have a positive impact on the
non-manual channels. These results suggest that
the creation and incorporation of additional UMLS
data could further enhance the performance of sign
language production.

Further work will explore neural architectures with
dedicated decoders for SL channels, leveraging
large pre-trained models as well. As a direct ex-
tension of our work, we will apply our approach to
other languages, such as Simple English. Anima-
tions produced with the model outputs are currently
being evaluated by deaf people.
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