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Abstract
In medical and social media domains, annotated corpora are often hard to distribute due to copyrights and privacy
issues. To overcome this situation, we propose a new method to generate a surrogate corpus for a downstream
task by using a text generation model. We chose a medical multi-label classification task, MedWeb, in which
patient-generated short messages express multiple symptoms. We first fine-tuned text generation models with
different prompting designs on the original corpus to obtain synthetic versions of that corpus. To assess the viability
of the generated corpora for the downstream task, we compared the performance of multi-label classification models
trained either on the original or the surrogate corpora. The results and the error analysis showed the difficulty of
generating surrogate corpus in multi-label settings, suggesting text generation under complex conditions is not trivial.
On the other hand, our experiment demonstrates that the generated corpus with a sentinel-based prompting is
comparatively viable in a single-label (multiclass) classification setting.
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1. Introduction

Supervised machine learning, which is the de facto
standard in today’s natural language processing
(NLP), requires annotated corpora. Although shar-
ing corpora with researchers enhances further de-
velopment in scale, annotated corpora may not be
distributed due to privacy policies and copyrights.
Especially in the medical domain, this problem
arises frequently and critically (Hahn and Oleynik,
2020; Aramaki et al., 2022). Also, social media
posts may not only contain some personal informa-
tion but are also often limited to content-excluding
distribution in the platform’s terms1.

Two major approaches have been taken to tackle
the problem of difficulty in corpus distribution. The
first approach is to delete personal information in
the corpus, that is, de-identification (Sibanda and
Uzuner, 2006; Uzuner et al., 2007) or anonymiza-
tion (Zuo et al., 2021), which is well studied in the
medical domain. MIMIC (Johnson et al., 2016) is
the most popular de-identified corpus in the med-
ical domain. However, it is costly and difficult to
achieve perfect de-identification of arbitrarily large
corpora, regardless of whether the method is based
on machine learning or human labor.

The second approach is to generate new corpora
in which any real person’s information is not con-
tained. One such corpus is MedWeb (Wakamiya
et al., 2019), where patients’ self-reports of symp-
toms were composed manually via crowdsourcing.
Whereas manually generating data is highly costly,
model-based automatic generation enables large-
scale and low-cost corpus creation. The recent

1https://twitter.com/en/privacy

advance in text generation (Zhang et al., 2022) pro-
motes such an approach, for example, in the social
media domain (Claveau et al., 2021) and in the
medical domain (Amin-Nejad et al., 2020). How-
ever, existing studies investigate the viability of such
generated corpora mainly for data augmentation,
which extends the existing small datasets to be
larger for data-hungry deep learning models. The
generated corpora in this approach are to be mainly
combined with the original dataset. The remaining
question is: Can a synthetic corpus created by text
generation be a surrogate for a downstream task?

This study aims at generating a distributable sur-
rogate corpus and investigating its viability in the
downstream task. We set the downstream task to
multi-label classification in the medical domain, i.e.,
the aforementioned MedWeb task: Multiple symp-
toms (such as runny nose and cough) expressed
in patient-generated short messages must be cor-
rectly labeled. We first generate synthetic corpora
by generation models trained on the original corpus.
Then, we evaluate the quality of the generated cor-
pora by solving the task with classification models.

Specifically, in the generation step, we fine-tuned
text generation models with different prompting
methods (i.e., the sentinel tokens and soft prompts)
to obtain different qualities of generated corpora.
In the evaluation (classification) step, we trained
the classification models on either the generated
corpora or the original corpus. The flow of this
experiment is outlined in Figure 1.

While a few recent studies (Claveau et al., 2021;
Amin-Nejad et al., 2020; Ive et al., 2020) started
investigating the viability of generated corpora as
a replacement for the original datasets, we tackle

https://twitter.com/en/privacy
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the following challenging settings:

User-generated text: Our target corpus to gener-
ate is patient-generated text, which depends
highly on context. The textual nature, thus,
becomes ungrammatical and fragmented.

Multi-label condition: A patient-generated mes-
sage of the target corpus has multiple symp-
tom labels. The generation model must under-
stand the multiple conditions to create a correct
message that expresses the corresponding
symptoms.

The contributions of this paper are as follows:

• We propose a text generation approach for
patient-generated corpus using pre-trained
text generation models.

• We evaluated the proposed approach using an
existing dataset in a multi-label classification
task in the medical domain (that is, MedWeb).

Figure 1: Flow of our experiment. Language gen-
eration models (Gens) were trained using the origi-
nal MedWeb training dataset Dtrain

org with different
prompting methods. Classification models (Morg

and Mgens) are trained on the MedWeb training
data Dtrain

org or the generated corpora (Dgens), re-
spectively. The MedWeb test data Dtest

org is used for
evaluation of both Morg and Mgen.

2. Related Work

2.1. Training Corpus Generation

Most studies on corpus generation are motivated
by data augmentation rather than the creation of
surrogate corpus. On the other hand, this study
aims to replace the original corpus. Some studies
evaluated surrogate corpus as part of their experi-
ments in the medical and social media domains.

2.1.1. Medical Domain

A few previous studies utilized a pre-trained lan-
guage model (PLM) for text data generation in the
medical domain. The generated text was used as
a training corpus.

Amin-Nejad et al. (2020) utilized PLM for Electric
Health Record (EHR) generation. They generated
texts given the patient’s conditions, including demo-
graphic data, diagnosis, procedures, medications,
microbiology tests, and laboratory tests. Generated
data were evaluated based on the performance of
unplanned readmission prediction and phenotype
classification. Generated data accomplished com-
parable results with original data. In addition, this
study showed that when combined with original
data, using generated data improves the perfor-
mance of classifiers in downstream tasks.

One of the advantages of automatic text gen-
eration is that it can generate a large number of
text that are hard to sample from the real world.
Motivated by the lack of data for rare symptoms,
PLM was used for the generation of symptom defi-
nitions alongside with biomedical dictionary in Kim
and Nakashole (2022). Given one symptom or two
symptoms, definitions were generated. Generated
definitions were used in vaccine side effect detec-
tion.

Pappas et al. (2022) also applied a pre-trained
language generation model for data augmentation.
They experimented with different data augmenta-
tion approaches for biomedical factoid question
answering. As one of the approaches, they uti-
lized question generation using fine-tuned T5 (Raf-
fel et al., 2020). ALBERT (Lan et al., 2019) was
used in the downstream task (biomedical factoid
question answering). They found that adding gen-
erated data to original data results in slightly better
performance than only using original data.

2.1.2. Social Media Domain

The generation of social media posts can also be
important because it also cannot be distributed
for confidentiality reasons. Claveau et al. (2021)
utilized a pre-trained language generation model
(GPT-2) (Radford et al., 2019) for a surrogate
training corpus generation. In downstream tasks,
namely sentiment analysis on product reviews and
fake news detection, the quality of generated cor-
pora was evaluated. In neural classification ap-
proaches, they trained BERT (Devlin et al., 2019)
as a classification model using 1) only original cor-
pus, 2) only generated corpus, and 3) a mixture
of original corpus and generated corpus. As a re-
sult, they found that 1) leads to better classifier
performance than 2) and without filtering, 1) tends
to perform better than 3).
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2.2. Controllable Text Generation

Controllable text generation (CTG) is one of the
hottest research topics in recent NLP. There could
be many possible ways to achieve a patient-
generated training corpus.

Zhang et al. (2022) gave a comprehensive sur-
vey on different approaches for CTG, which are 1)
fine-tuning, 2) retrain/refactor PLMs and 3) post-
process. Also, as described in Zhang et al. (2022),
there are three major categories of fine-tuning
approaches: prompt-based approaches, adapted
module approaches, and reinforcement learning
inspired approaches.

Jiang et al. (2021) showed that the performance
of PLM is sensitive to prompt design modification.
Liu et al. (2021a) provided a survey on different
prompting approaches and those performances.
In terms of methods for designing prompts and
their human effort, most of the methods can be
categorized into two: hand-crafted and automated
search. Hand-crafted is the approach where hu-
mans design the suboptimal suitable prompt, while
automated search is the approach where a suitable
prompt is chosen automatically.

Among automated search approaches, Liu et al.
(2021b) and Lester et al. (2021) experimented with
soft prompts, tokens with trainable embeddings in-
troduced in the fine-tuning stage. By inserting soft
prompts, PLM can automatically search for an opti-
mal prompt in the continuous space of all possible
prompts. Wang et al. (2022) applied the soft prompt
method for data augmentation in few-shot settings.
Generated corpora were used for sequence label-
ing and sentence classification tasks.

T5 (Raffel et al., 2020) was used in corpus gen-
eration and BERT was used for downstream tasks.
They found that adding soft prompts is effective in
both downstream tasks. Also, Lester et al. (2021)
experimented with sentinel tokens used in pre-
training of T5. In pre-training of T5, unique sentinel
tokens are used for marking masked spans in the
input text. The task for T5 is to reconstruct these
masked spans. They showed that in some experi-
mental settings, using sentinel tokens in prompts
is beneficial for the performance of PLM.

In the context of natural language generation,
Schick and Schütze (2021) experimented with
combining multiple instructions (prompts) through
knowledge distillation. They evaluated the pro-
posed automated search in a summarization task.

Although most prompt designing methods men-
tioned above are proposed in the context of Natural
Language Understanding (NLU) tasks, we applied
those methods to experiment with different prompt-
ing methods.

3. Dataset

MedWeb dataset consists of pseudo-posts for multi-
label symptom classification.

To avoid privacy issues, the dataset was devel-
oped by crowdsourcing and not extracted from the
actual X (previously Twitter) platform. In crowd-
sourcing, data were constructed from the symptom
keywords (called “seed words”) that frequently ap-
peared in real-world disease-related posts. Each
post includes a description of whether the X (pre-
viously Twitter) user is experiencing a combina-
tion of symptoms, that is, a combination from a
set “Influenza”, “Diarrhea”, “Hay fever”, “Cough”,
“Headache”, “Fever”, “Runny nose”, and “Cold”. Ex-
amples of pseudo-posts in the dataset are listed in
Table 1.

Classifying a combination of symptoms given a
post can be considered a multi-label classification
task among NLP tasks. In the following sections,
we refer to one label pattern as a symptom combi-
nation.

MedWeb dataset contains 2,560 posts, and the
ratio of training to test data is 75% (1,920 posts) to
25% (640 posts). “No symptom”, “Cold”, “Runny
nose”, “Fever”, “Headache”, “Cough”, “Cold and
Runny nose”, “Hay fever and Runny nose”, “Diar-
rhea”, and “Influenza and Fever” consist of 1,754
posts in total, which is 91% of all MedWeb training
data.

4. Method

To investigate the viability of automatically gener-
ated corpora as surrogate training datasets, we
trained; 1) the generation model (Section 4.1),
which is utilized to create generated data (denoted
with Dgen) and 2) the classification models (Section
4.2), which are used to evaluate the quality of the
generated texts.

4.1. Generation Models
We fine-tuned a text generation model Gen on the
original MedWeb training dataset Dtrain

org . Following
the previous study (Amin-Nejad et al., 2020), we
decided to choose a fine-tuning approach among
different controllable text generation (CTG) ap-
proaches. We used T5 (Raffel et al., 2020) as Gen
in our method. Specifically, we fine-tuned the model
pre-trained on Japanese corpora.2 Since, we are
handling a data-to-text generation task, encoder-
decoder-type models are suitable. We considered
T5 as representative of such models.

Gen is fine-tuned in the following manner: given
a symptom combination, it should generate a post

2https://huggingface.co/sonoisa/
t5-base-japanese

https://huggingface.co/sonoisa/t5-base-japanese
https://huggingface.co/sonoisa/t5-base-japanese
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Post Influenza Diarrhea Hay fever Cough Headache Fever Runny nose Cold
風邪をひくと全身がだるくなる。
(The cold makes my whole body weak.) – – – – – – – +

花粉症の症状が出てたのは久しぶりだ。
(It’s been a while since I’ve had allergy symptoms.) – – + – – – + –

インフルエンザのワクチン打ちに行ってきた。
(I went to get vaccinated for the flu.) – – – – – – – –

Table 1: Examples of MedWeb pseudo-posts. English translations are shown in the examples. + sign
stands for the existence of the corresponding symptom in the user; – sign stands for the absence.

that expresses the corresponding symptoms. For
example, when the model is given a combina-
tion of “fever and headache”, the generated post
should say, for example, “I had a fever today. Bad
headache too. . . ”. Among various ways to achieve
this conditional text generation, we chose prompt-
ing as a method because of its conceptual simplicity
and relative efficiency in computational cost. Previ-
ous studies (Lester et al. (2021), Jiang et al. (2021),
Liu et al. (2021b)) showed that giving appropriate
instruction improves the performance of large gen-
erative PLMs on multiple tasks. Based on those
work, we chose the following prompting methods:

base (bs): A hand-crafted symptom prompt.
As a baseline prompting method, we designed
hand-crafted prompts. We represented a com-
bination of symptoms by symptom name + the
description of whether the symptom should
appear or not. We put this expression at the
beginning of the input sentence. To transform
the instruction into the form of a question, we
put “のTweetは？ (What is the tweet?)” at the
end of the input sentence.

sentinel (st): A hand-crafted symptom prompt
with a sentinel token.
We added a sentinel token (denoted with <X>)
to the base prompt. Adding the sentinel to-
ken makes the task more similar to the task in
pre-training of generative PLMs. We expected
that catastrophic forgetting of the model could
be avoided by making fine-tuning stage more
similar to pre-training.

soft (sf): A hand-crafted symptom prompt with
soft prompt tokens.
In our baseline design, we added soft prompt
tokens (<s[id]>) that are trained simultane-
ously with the model parameters, inspired by
Liu et al. (2021b) and Lester et al. (2021). This
method was originally adopted to solve natural
language understanding tasks. We assumed
that this method would work for text generation
too.

sentinel+soft (st+sf): A hand-crafted symptom
prompt with soft prompts and a sentinel token.

We applied two modifications (the sentinel to-
ken and soft prompts addition) to the baseline
design.

Examples of the four prompt designs given the
same symptom combination are listed in Table 2.
Finally, we created four Gens and 40 Dgens (10
datasets per prompt design) as we will explain in
Section 5.1.

4.2. Classification Models
We evaluate the Dgen quality on a classification
task, the same as the MedWeb shared task.

We compared the evaluation results of different
models using Dtest

org . To do so, we trained the clas-
sification models using data created by different
Gens (mentioned in Section 4.1). We also trained
the classification model using Dtrain

org .
We trained Gens using the prompt base, sen-

tinel, soft, and sentinel+soft, and generated
posts (Dgens) from each Gen. Then we trained indi-
vidual classification models on the different Dgens.
Mgen(bs), Mgen(st), Mgen(sf), and Mgen(st+sf) re-
spectively denote these classification models.

The classification models used in our experiment
are a pre-trained BERT model3 with a linear trans-
formation layer for the symptom combination classi-
fication. We trained our classification models on the
task of symptom combination classification. Given
a post, the model estimates the probabilities for
eight symptom labels. When the output probability
of a label surpassed a threshold, we considered
the post to contain the corresponding symptom.

5. Experimental Setup

We evaluated the generated posts on Dtest
org by mea-

suring the performance of the different Mgens com-
pared to Morg. The flow of this experiment is shown
in Figure 1.

The hyperparameters for the models Mgen and
Morg are as follows: Mgen is trained for 20 epochs
with a batch size of 32 using the Adam optimizer
with 3e-4 learning rate, while Morg is trained for 24

3https://huggingface.co/cl-tohoku/
bert-base-japanese

https://huggingface.co/cl-tohoku/bert-base-japanese
https://huggingface.co/cl-tohoku/bert-base-japanese
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Prompt design Example prompt

base インフルエンザの症状なし、. . .鼻水・鼻づまりの症状あり、風邪の症状なしのTweetは？
(What is the tweet in which the symptom of influenza doesn’t appear, . . . runny nose appears, and cold doesn’t appear?)

sentinel インフルエンザの症状なし、. . .鼻水・鼻づまりの症状あり、風邪の症状なしのTweetは？<X>
(What is the tweet in which the symptom of influenza doesn’t appear, . . . runny nose appears, and cold doesn’t appear?<X>)

soft
インフルエンザの症状なし、. . .鼻水・鼻づまりの症状あり、風邪の症状なしのTweetは？<s1>. . .<s99>
(What is the tweet in which the symptom of influenza doesn’t appear, . . . runny nose appears, and cold doesn’t ap-
pear?<s1>. . .<s99>)

sentinel+soft
インフルエンザの症状なし、. . .鼻水・鼻づまりの症状あり、風邪の症状なしのTweetは？<s1>. . .<s99><X>
(What is the tweet in which the symptom of influenza doesn’t appear, . . . runny nose appears, and cold doesn’t ap-
pear?<s1>. . .<s99><X>)

Table 2: Examples of different prompt designs, given “Runny nose” as the input symptom combination.
<X> denotes the sentinel token and <s[id]> denotes soft prompt tokens.

epochs with a batch size of 8 using the AdamW opti-
mizer with 1e-8 learning rate. As for the generation
process, the hyperparameters include setting the
number of beam search and beam groups equal
to the number of posts for each label, a diversity
penalty of 0.4, and a temperature value of 1.0.

5.1. Generation of Data
In order for the generated dataset to be distributable
and comparable to Dtrain

org , Dgen should meet the
following conditions. 1) generated post should be
de-identified and 2) the distribution of symptom
combinations should be the same as that in Dtrain

org .
To ensure that the settings of the task are the same
for Mgens and Morg, we made the distribution of
conditional labels for a generation the same as that
of the distribution of labels in the Dtrain

org . Because
of these conditions, additional steps were needed
to generate posts. Using the fine-tuned Gens, we
first generated a larger number of posts for each
symptom combination than that of Dorg

4. Then, we
subtracted the subset of generated posts using an
exact match search. The ratios of exactly matched
posts generated by Gens using the prompt base,
sentinel, soft, and sentinel+soft were 2.0%,
1.5%, 1.1%, and 1.1%, respectively5.

5.2. Evaluation
We evaluated classification models using the basic
metrics used in the MedWeb shared task, and
those are precision (micro average), recall (micro
average), F1 score (micro average) and exact
match accuracy. Dtest

org is used for the evaluation
of classification models. We created Dgen for
each prompt 10 times and trained 10 Mgen for
each Dgen, resulting in 100 models with different
parameters per prompt. Similarly, we trained

4Since we have no a priori knowledge about the num-
ber of exactly matched posts to be generated, we gen-
erated 35% more posts for each symptom combination
and then randomly sampled them.

5Dgen generated in this experiment is available at
https://github.com/seiji-shimizu/medweb-gen

Morg 10 times on Dtrain
org . We obtained the scores

(precision, recall, F1 score, and exact match
accuracy) for each 100 models for Mgen and 10
models for Morg, and present the average scores
as the scores for Mgen(bs), Mgen(st), Mgen(sf),
Mgen(st+sf), and Morg.

We evaluated the performance in the following
three settings:

• Multi-symptom setting which is a usual multi-
label classification (multi in short).

• Single-symptom classification using all data
including multi-symptom posts for training data
(singleall in short).

• Single-symptom classification without us-
ing multi-symptom posts for training data
(singleonly in short).

5.3. Manual Evaluation of Fluency
Additionally, we independently evaluated the flu-
ency of the generated corpus with a Turing-test-like
evaluation. To do so, we built the mixed 300 test
set, which consisted of 150 generated posts and
150 original posts. We asked three Japanese an-
notators (two of them are nurses with more than 10
years of experience) to label the constructed data.
Given a post, the annotators labeled whether the
post is from original data or generated data.

6. Results

6.1. Results of Classification
The results are summarized in Tables 3, 4 and
5. Multiple Mgen with different prompting meth-
ods are denoted with Mgen(bs) (prompted by
base), Mgen(st) (prompted by sentinel), Mgen(sf)

(prompted by soft), and Mgen(st+sf) (prompted by
sentinel+soft).

The results of multi are shown in Table 3.
Among the four prompting methods, Mgen(st) gave
the best result in terms of precision (0.757) and

https://github.com/seiji-shimizu/medweb-gen
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Model Prompt Accuracy F1 (micro avg.) Recall (micro avg.) Precision (micro avg.)
Mgen(bs) base 0.632 (0.0105) 0.759 (0.0120) 0.762 (0.0080) 0.756 (0.0064)
Mgen(st) sentinel 0.654 (0.0105) 0.757 (0.0114) 0.758 (0.0085) 0.757 (0.0065)
Mgen(sf) soft 0.629 (0.0119) 0.716 (0.0095) 0.695 (0.0201) 0.738 (0.0120)
Mgen(st+sf) sentinel+soft 0.615 (0.0062) 0.692 (0.0080) 0.671 (0.0176) 0.716 (0.0078)
Morg - 0.855 (0.0325) 0.910 (0.0126) 0.919 (0.0317) 0.901 (0.0170)

Table 3: Scores for multi. Values in parentheses represent standard deviations of the scores from 10
models. The highest accuracy and F1 scores are presented in bold.

Model Prompt Accuracy F1 (micro avg.) Recall (micro avg.) Precision (micro avg.)
Mgen(bs) base 0.682 (0.0166) 0.800 (0.0171) 0.867 (0.0134) 0.742 (0.0148)
Mgen(st) sentinel 0.701 (0.0132) 0.807 (0.0146) 0.875 (0.0096) 0.750 (0.0099)
Mgen(sf) soft 0.677 (0.0120) 0.726 (0.0125) 0.741 (0.0260) 0.712 (0.0145)
Mgen(st+sf) sentinel+soft 0.679 (0.0062) 0.673 (0.0115) 0.770 (0.0200) 0.718 (0.0065)
Morg - 0.861 (0.0085) 0.915 (0.0172) 0.938 (0.0110) 0.889 (0.0074)

Table 4: Scores for singleall. Values in parentheses represent standard deviations of the scores from 10
models. The highest accuracy and F1 scores are presented in bold.

exact match accuracy (0.654). Mgen(bs) gave the
best F1 score (0.759) and recall (0.762). Since
the highest exact match accuracy is the hardest
to achieve, we consider Mgen(st) to be the best
performing Mgen. Compared to Morg, the best per-
forming Mgen (that is, Mgen(st)) could not achieve
comparable scores.

The results of singleall are shown in Table 4. In
this evaluation, we used the same classification
models (trained on Dgen and Dtrain

org ) as in multi
and excluded posts with multiple symptoms only
from the test data. Both Morg and Mgen performed
slightly better compared to the results of multi. The
gap between Morg and the best performing Mgen

was still relatively large.
The results of singleonly are shown in Table 5.

We only evaluated Mgen(st), which was the best
performing Mgen model in other experiments. The
gap betweenMorg andMgen became smaller in this
experiment. Compared with the results in Table 4,
the scores of the best performing Mgen increased
by 0.0407 on average. On the other hand, the
scores for Morg increased by 0.0218 on average.

6.2. Results of Manual Evaluation of
Fluency

The average accuracy of the labeling was 0.648
and average inter-human Cohen’s kappa was 0.355.
Both of those scores can be interpreted positively
in the context of the Turing-test-like evaluation.

The low accuracy score suggests that the fluency
of the generated corpus is relatively indistinguish-
able from that of the original corpus, and the task
of labeling itself was difficult. Also, the low Cohen’s
kappa coefficient suggests the subjectivity of label-
ing. These results can be evidence that the quality
of the generated texts is almost equivalent to that
of the original.

7. Discussions

In Section 6, we found that the gap between Morg

and Mgen was prominent. We also found that the
scores for Mgen improved, and the gap between
Morg and Mgen became less prominent with train-
ing data without multiple symptoms (labels). This
indicates that the quality of the generated multi-
symptom posts is lower than that of single-symptom
posts.

7.1. Difficulty in Multi-symptom Handling
To find out what is the main cause of the gap be-
tween Morg and Mgen, we further analyzed the
quality of generated text from different symptom
combinations.

We analyze the qualitative difference of gener-
ated posts with single-symptom labels and multi-
symptom labels. Table 6 shows examples of posts
labeled “Influenza and fever”, “Hay fever and Runny
nose”, and “Cold and Runny nose” from Dgen gen-
erated from the prompt sentinel in the upper half of
the table. As a comparison to multi-symptom labels
mentioned above, we provide examples of posts la-
beled with “Fever”, “Runny nose”, and “Cold” from
Dgen generated from the prompt sentinel in the
lower half of the table. Note that, for this qualita-
tive error analysis, even if only the expression of
“Influenza” is in the generated post, we consider the
generated post correct for “Influenza and Fever”.
Similarly, for “Hay fever and Runny nose”, we con-
sider the generated post correct, even if only the
expression of “Hay fever” is in the generated post.
The reason is that such posts (only including ex-
pression of “Influenza” or “Hay fever” and labeled
“Influenza and Fever” and “Hay fever and Runny
nose”) exist in Dorg. We provide the correct ex-
amples in Table 6 (ids 1, 2, 6, 7, 11, and 12 for
multi-symptom post generation and 16, 19, and 22
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Model Prompt Accuracy F1 (micro avg.) Recall (micro avg.) Precision (micro avg.)
Mgen(st) sentinel 0.785 (0.0053) 0.837 (0.0111) 0.849 (0.0100) 0.825 (0.0041)
Morg – 0.893 (0.0091) 0.932 (0.0122) 0.950 (0.0066) 0.915 (0.0067)

Table 5: Scores for singleonly. Values in parentheses represent standard deviations of the scores from
10 models.

Multi-symptom id (correct or error) Generated post
1 (correct) 高熱が出て、インフルエンザにかかってしまった。 (I got a high fever and caught flu)

Influenza 2 (correct) 昨日、インフルかかったから今日は休むわ。 (I’ll take a break today because I’ve got a flu yesterday.)
and 3 (error) 高熱で仕事できないから今日は休むわ。 (I can’t work because of the high fever, so I’m taking a day off. )
Fever 4 (error) 兄もインフルで寝込んでる。 (My brother is also in bed with the flu.)

5 (error) 風邪ひいた。 (I’ve got a cold)
6 (correct) 花粉症で鼻水止まらない。 (I can’t stop running nose with hay fever)

Hay fever 7 (correct) まさか自分が花粉症になるとは思ってもなかったわ。 (I never thought I would get hay fever.)
and 8 (error) 鼻水止まらん。 (I can’t stop my runny nose.)
Runny nose 9 (error) 兄が花粉症で、今日も休むわ。 (My brother has hay fever, so I will be absent today.)

10 (error) そんなにひどい頭痛は久し振りだなあ。（I haven’t had a headache that bad in a long time.)
11 (correct) 風邪で鼻水止まらない。 (I have a cold and can’t stop my runny nose.)
12 (correct) 鼻風邪ひいた。薬飲んだら眠くなってきた (I caught a nose cold. I fell asleep after taking medicine)

Cold and 13 (error) 風邪ひいたー。 (I caught a cold.)
Runny nose 14 (error) 兄が鼻風邪で寝込んでる。 (My brother is in bed with a nose cold.)

15 (error) 花粉症のせいか、鼻風邪が治らない。

Single-symptom id (correct or error) Generated post
16 (correct) 今年一番の熱。今日は仕事休むわ (The most horrible fever of the year. I’m off work today)

Fever 17 (error) 弟が熱でて、仕事休むわ。 (My brother has a fever, so I will be absent from work.)
18 (error) これって風邪? ( Is this a cold?)
19 (correct) 今日は鼻水止まらない。 (My nose won’t stop running today.)

Runny nose 20 (error) 兄が鼻水でぐったりしてる。 (My brother is exhausted from a runny nose.)
21 (error) 日本には花粉症の人が多いんだってね。 (There are many people with hay fever in Japan.)

22 (correct) また、風邪ひいたかも。 ( I might have caught a cold, again.)
Cold 23 (error) 中国で大流行した風邪が流行ってるらしいね。 (It seems that there is an epidemic of cold in China.)

24 (error) 日本の夏は本当に寒いんだけど・・・・? (Summer in Japan is really cold, but...?)

Table 6: Examples of generated posts. The upper half is the examples of multi-symptom posts, and the
lower half is examples of single-symptom posts

for single-symptom post generation).
We observed three types of typical errors.

Shortage error: The first type of error is a short-
age of symptom expressions. In this type of er-
ror, even when given multiple conditions, such
as “Influenza and Fever”, generated posts only
contain a part of symptom expressions. Ex-
amples are posts in ids 3, 8, and 13 in Table
6.

Out-of-user error: The second type of error is
non-user symptom expressions. In this type of
error, the posts are referring to a symptom of a
non-user, rather than that of the X (previously
Twitter) user who wrote the post. Examples
are posts in ids 4, 9, and 14 in Table 6.

Label inconsistency error: The third type of er-
ror is those that include other symptoms. Ex-
amples are posts in ids 5, 10, and 15 in Table 6.
Note that no symptom at all is also classified
into this type of error.

We observed the same types of errors as multi-
symptom post generation in single-symptom post
generation. Since single-symptom post generation
is supposed to satisfy only one condition, the first
type of error observed in multi-symptom was not

observed. Examples of the second type of error
are shown in ids 17, 20, and 23 in Table 6, and the
third type of error is shown in ids 18, 21, and 24.

7.2. Scores for Individual Symptom
Combination

Since multi-symptom post generation has more
complex conditions, more types of error can oc-
cur compared to single-symptom post generation.
A possible reason for the lower scores for multi-
symptoms is that the number of types of error in
the multi-symptoms condition is larger than that
in the single-symptom condition. We analyze the
scores for individual symptom combinations.

The scores improved after the removal of multi-
symptom labels. This suggests that the scores
for multi-symptom labels are lower than those of
single-symptom labels. Also, the difference in eval-
uation scores between singleall and singlewithout

suggests that using generated multiple-symptoms
posts in training had a negative influence even on
classification of posts labeled with single and no
symptom. We investigate those two assumptions
by analyzing the scores for multi-symptom labels
and single-symptom labels.

As mentioned in Section 3, multi-symptom la-
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Model Label Accuracy F1 (micro avg.) Recall (micro avg.) Precision (micro avg.)

Mgen(st)

Influenza and Fever 0.561 (0.0349) 0.701 (0.0055) 0.639 (0.0284) 0.776 (0.0218)
Hay fever and Runny nose 0.874 (0.0126) 0.930 (0.0046) 0.912 (0.0111) 0.948 (0.0060)
Cold and Runny nose 0.886 (0.0179) 0.952 (0.0020) 0.945 (0.0089) 0.960 (0.0047)

Morg

Influenza and Fever 0.754 (0.0346) 0.824 (0.0271) 0.779 (0.0325) 0.876 (0.0202)
Hay fever and Runny nose 0.874 (0.0197) 0.904 (0.0171) 0.876 (0.0214) 0.934 (0.0122)
Cold and Runny nose 0.928 (0.0431) 0.961 (0.0064) 0.956 (0.0307) 0.966 (0.0176)

Table 7: Metrics score for each multi-symptom label. Values in parentheses represent standard deviations
of the scores from 10 models. The highest scores for accuracy and F1 are shown in bold.

single-symptom labels “No symptom”
Model Training data Accuracy F1 (micro avg.) Recall (micro avg.) Precision (micro avg.) Accuracy

Mgen(st)
mix 0.900 (0.0208) 0.939 (0.0126) 0.931 (0.0137) 0.948 (0.0108) 0.562 (0.0161)
single 0.907 (0.0179) 0.928 (0.0021) 0.907 (0.0179) 0.949 (0.0109) 0.723 (0.0161)

Morg
mix 0.929 (0.0252) 0.953 (0.0148) 0.944 (0.0235) 0.963 (0.0133) 0.750 (0.0312)
single 0.950 (0.0207) 0.962 (0.0160) 0.950 (0.0207) 0.974 (0.0110) 0.802 (0.0245)

Table 8: Average metrics score for single-symptom labels and for “No symptom”. Values in parentheses
represent standard deviations of the scores from 10 models. The highest scores for accuracy and F1 are
shown in bold.

bels with more than 30 posts are “Cold and Runny
nose”,“Hay fever and Runny nose”, and “Influenza
and Fever”. We present the scores for those three
multi-symptom labels in Table 7. As shown in Table
7, only the multi-symptom combination “Influenza
and Fever” has apparently different results between
Mgen(st) and Morg. This suggests that the other
two combinations (“Hay fever and Runny nose” and
“Cold and Runny nose”) have less influence on the
gap between Mgen(st) and Morg in overall scores,
and improvement after removal of posts with multi-
symptom labels.

Scores for single-symptom labels, we found that
most of them have similar results. The scores of
Morg and Mgen(st) from singleall to singlewithout

tend to slightly increase compared to those of
with multiple-symptom. We present the aver-
age scores of Mgen(st) and Morg in singleall and
singlewithout for “Fever”, “Runny nose”, “Cold”, “Di-
arrhea”, “Headache” and “Cough” in Table 8.

“mix” represents that model is trained on mixed
data of multi, single, and no symptom posts, and
“single” represents that model is trained on only
single and no symptom posts. As shown in Table
8, the scores of the four models do not differ much.

Only the label “No symptom” had different results
from others. Due to this, we present the results for
“No symptom” in Table 8. As shown in Table 8, the
exact match accuracy for “No symptom” improved
after the removal of posts with multi-symptom la-
bels.

To summarize, the scores for multi-symptoms
are lower than those of single-symptoms in gen-
eral. Especially, the scores for the label “Influenza
and Fever” was the lowest among three symptom
combinations.

7.3. Prompting Methods in Post
Generation

The results showed that adding the sentinel token
to the prompts effectively improves the classifica-
tion performance. The improvement implies that
the quality of the data generated by Gen can be
improved with proper instructions.

We explore the soft-prompting method in our ex-
periment. Despite the findings in the previous work,
we did not see an improvement from the baseline
method. Although we did not analyze the reason
for the underperformance of the soft prompting
method, it would be interesting to investigate how
we can apply the prompting methods usually used
in natural language understanding tasks to gen-
eration tasks (such as experimenting with the dif-
ferent numbers of soft prompts). As mentioned
in (Schick and Schütze, 2021), methods to avoid
overfitting are necessary for prompting methods in
future work.

8. Conclusions and Future Work

This study experimented with a method for gener-
ating a distributable surrogate corpus and investi-
gated its viability. We experimented with different
prompting methods in fine-tuning the pre-trained
language generation model and evaluated the qual-
ity of generated corpora by the classification task.
The results showed that when generating posts that
contain multiple symptoms, the generated corpora
suffer from the problem of semantic inconsistency
between the labels and the generated content. Still,
if the surrogate corpus was used in simpler set-
tings, the generated data would be comparatively
viable as a training corpus, as demonstrated in a
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single-symptom classification without using multi-
symptom posts for training data.

In further pursuit of the research in this direc-
tion, we plan to 1) generate corpora in different
languages than Japanese, namely MedWeb’s En-
glish and Chinese datasets, 2) measure the down-
stream performance in generating a larger amount
of surrogate corpora than the original corpus, and
3) compare different models (other than T5) to in-
vestigate the impact of the choice of the model
architecture on generation quality.

9. Limitations

Although we considered posts as a corpus in the
medical domain, some clinical texts, such as dis-
charge summaries, consist of much longer sen-
tences. Since the pre-trained model used in this
experiment accepts only less than 512 tokens, the
low scalability to long texts, especially those with
more than 512 tokens, is the limitation of this work.

10. Ethics Statement

The data used in this study, MedWeb, is deemed
ethically sound. However, in the context of gen-
erating training data for medical NLP tasks, it is
crucial to acknowledge the potential presence of
errors in the generated data. Consequently, it is
strongly advised against employing this data for
tasks that have a direct impact on human life, such
as automated diagnosis. Additionally, the study
recognizes the possibility of the generated model
memorizing and reproducing training data, empha-
sizing the importance of continuously integrating
improvements based on relevant research findings.
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