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Abstract
In recent years, the analysis of clinical texts has evolved significantly, driven by the emergence of language
models like BERT such as PubMedBERT, and ClinicalBERT, which have been tailored for the (bio)medical
domain that rely on extensive archives of medical documents. While they boast high accuracy, their lack of
interpretability and language transfer limitations restrict their clinical utility. To address this, we propose a
new, lightweight graph-based embedding method designed specifically for radiology reports. This approach
considers the report’s structure and content, connecting medical terms through the multilingual SNOMED Clinical
Terms knowledge base. The resulting graph embedding reveals intricate relationships among clinical terms,
enhancing both clinician comprehension and clinical accuracy without the need for large pre-training datasets.
Demonstrating the versatility of our method, we apply this embedding to two tasks: disease and image classification
in X-ray reports. In disease classification, our model competes effectively with BERT-based approaches, yet it is
significantly smaller and requires less training data. Additionally, in image classification, we illustrate the efficacy of the
graph embedding by leveraging cross-modal knowledge transfer, highlighting its applicability across diverse languages.
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1. Background and Introduction

The advent of transformer-based architectures has
revolutionized the field of medical text and image
processing. Fine-tuned versions of the Bidirec-
tional Encoder Representation from Transformers
(BERT) model, such as ClinicalBERT (Alsentzer
et al., 2019) and BioBERT (Lee et al., 2020), have
demonstrated remarkable performance (Gu et al.,
2021). ClinicalBERT, in particular, excels in tasks
related to radiology reports of X-ray scans, includ-
ing text-based disease classification and report
generation. However, the direct application of gen-
eral natural language processing (NLP) methods
to the medical domain presents significant chal-
lenges, advocating for the development of domain-
specific solutions for processing medical text. Due
to the fact that the BERT models primarily focus
on the English language, adapting these large lan-
guage models for multilingual use poses signifi-
cant challenges, leading to reduced performance.
Also, Spanish counterparts of BERT, such as BETO
(Cañete et al., 2023) and bio-cli-52k (Carrino et al.,
2021) are trained on approximately ten times less
data, resulting in inferior performance.

Rather than relying on self-supervision, we can
employ structured medical knowledge. The Uni-
fied Medical Language System (UMLS) comprises
standardized definitions and relationships within
medical terminologies and vocabularies across 25
languages (Bodenreider, 2004). The UMLS can
be implemented across various national hospitals
and even transnationally, and it is particularly ben-
eficial for countries that lack access to large med-

ical datasets due to their smaller population size
or limited financial resources. The specific ontolo-
gies within UMLS offer additional advantages, as
SNOMED CT provides connections between con-
cepts within its respective ontology. The additional
information from this knowledge base can be valu-
able, as expert-level annotation is rare in the med-
ical domain. A particularly useful application of
SNOMED CT is in clinical reports, which are widely
available in public datasets but are largely unan-
notated. The structure of UMLS and SNOMED
CT makes them suitable for representation with
knowledge graphs, which can efficiently represent
structured sets of entities (Chang et al., 2020). In
specialized domains like medicine, language mod-
els must learn directly from domain-specific termi-
nologies to enhance reliability, rather solely relying
on corpus-based learning.

This paper introduces a novel self-attention
graph embedding method for structuring clinical re-
ports, integrating information from existing medical
knowledge by leveraging both the report’s structure
and its linguistic content. Our experimental results
demonstrate that the proposed self-attention graph
embedding achieves competitive performance, and
the text embeddings from the clinical report offer a
more computationally efficient, more interpretable,
and more intuitive alternative to existing embedding
methods. We demonstrate that the utilization of
UMLS and SNOMED CT facilitates effortless trans-
lation across languages, and finally, the proposed
report graph can be integrated into a multimodal
framework for knowledge transfer to images, en-
abling improved classification accuracy.
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2. Related Work

Two main approaches are currently utilized for
embedding medical text: pre-trained models
on biomedical datasets and fine-tuned versions
of those models. The pre-trained models in-
clude BioWordVec (Zhang et al., 2019), and the
fine-tuned models include BERT variants such
as BioBERT (Lee et al., 2020), ClinicalBERT
(Alsentzer et al., 2019), PubMedBERT (Gu et al.,
2021) and many more, which are fine-tuned on
(bio)medical and clinical datasets. SapBERT (Liu
et al., 2021a), which introduced a self-alignment
strategy for learning from UMLS synonym pairs via
a multi-similarity (MS) loss function to force related
concepts closer to one another in BERT’s represen-
tation space. These embeddings form the basis of
the most recent state-of-the-art methods for radi-
ology report generation and outperform previous
methods by a large margin. Knowledge graphs
have been employed to improve patient record-
based diagnosis (Heilig et al., 2022), enhance entity
extraction from radiology reports (Jain et al., 2021),
and supplement image diagnosis (Prabhakar et al.,
2022). The graphs used to generate a clinical re-
port are typically small (approximately containing
15 nodes) consisting of disease labels, proving
to be an effective method for capturing the global
context (Yan, 2022; Liu et al., 2021c,b). Our ap-
proach suggests embedding from a clinical radiol-
ogy report, rather than for generating one. No prior
research has explored structured representations
encompassing full clinical reports with knowledge
graphs and medical ontologies.

3. Methodology

Our proposed method consists of three steps: ex-
tracting entities from the clinical report, construct-
ing a knowledge graph, and encoding the graph,
as shown in Figure 1. The graph’s nodes repre-
sent words in the report that match terms from the
clinical database, and the edges represent relation-
ships between these terms and their locations in
the report.

3.1. Named Entity Recognition
Clinical concepts C embedded within the plain
text of the clinical reports are extracted using
Named Entity Recognition (NER) through MetaMap
(Aronson and Lang, 2010), on English UMLS con-
cepts; and for Spanish, we utilize UMLSMapper
(Perez et al., 2020). From C, we extract UMLS
Concept Unique Identifiers CUIs : {i0, i1, . . .} =
Concepts(C) . For each CUI, the correspond-
ing SNOMED-CT concept is extracted, resulting
in the final set of clinical concepts from report
C : {c0, c1, . . .}.

Figure 1: Overview of the architecture showcasing
the process of constructing and assessing knowl-
edge graph embeddings and encoding the graph
with both textual and image data for disease classi-
fication.
3.2. Knowledge Graph Construction
An undirected graph is considered in our graph con-
struction phase where the Graph GC = (NC , EC)
defined by a set of nodes NC = {n0, n1, . . .} and
edges EC = {el↔m, . . .}, with el↔m = (nl, nm).
The structure of the clinical report is captured by
considering each sentence separately with sen-
tence node Si of sentence i. The SNOMED-CT
concepts extracted from the clinical report C gives
us a set of concepts per sentence: {ci,0, ci,1, . . .}.
To capture the context between nodes we have the
global connect node gn with the following set of
nodes NC = {si, gn, c}. There are three types of
edges: edges between the concept nodes, edges
from the sentence nodes, and the global con-
nect node, which connects to every concept node
EC = {ec↔c, es↔c, egn↔s, egn↔c}. The types of
edges are as follows: (a) Concept nodes c are
linked by edges ec↔c if they have a contextual re-
lation based on the SNOMED CT ontology. (b)
Sentence nodes si are linked to all the c nodes
in their sentence by edges es↔c, representing the
local structure of the report. (c) A global node
gn connects to every concept node and sentence
node through edges egn↔c and egn↔s, allowing for
communication across the whole report and thus,
EC = {(cl, cm)}, {(cl, si)}, {(si, gn)}, {(cl, gn)}.

3.3. Self-Attention Knowledge Graph
Encoding

Graph attention networks use the self-attention
mechanism to allow nodes in GC to focus on their
neighbors effectively (Velickovic et al., 2017) and
are the preferred method for encoding knowledge
graphs. The node Nu

C and neighbor nodes Nv
C
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with their weight matrices W ∈ RL′
f∗Lf , where Lf

is the length of the node feature. The normalized
attention score between these nodes can be written
as: attuv = softmax(LRelu(Watt

x[WNu
C
||WNv

C
])).

The node Nu
C is encoded as: Nu

C
′ = σ(

∑
attuv ·

WNv
C
), where σ is a nonlinear function. The whole

graph with n attention layers stacked on top of each
other is encoded as:G′

C = fn
attention(NC , EC).

3.4. Analysis and Inferences
To determine whether the constructed graph em-
beddings capture information representative of the
content of the clinical report, we evaluate them
on two classification tasks, as illustrated in Figure
1. The effectiveness of our knowledge graph em-
bedding is assessed for a diagnosis classification
based on the clinical report, and we compare our
method against biomedical variants of BERT. Dis-
ease classification is performed on the entire report
through a max pooling operation on encoded node
representations N ′

C , followed by a classification.
The ability of our graph embedding to transfer the

information it contains across modalities is tested
by integrating the embeddings into a knowledge dis-
tillation with variational inference (KDVI) (Ahn et al.,
2019), where graph embeddings are employed to
improve image-based disease classifications. A
conditional latent variable model was introduced to
distill the information from clinical report C to chest
X-ray scan through variational inference and we
draw inspiration from conditional variational infer-
ence through KG reasoning (CVIR) (Chen et al.,
2018).

The evidence lower bound objective (ELBO)
of CVIR consists of a term for reconstructing
the data and a term for measuring the Kullback-
Leibler (KL) divergence: L = E[log p(y|I, zI)] −
DKL[q(z)||p(zI |I)] where zI is a hidden represen-
tation of I, y are the class labels, and p(zI |I) is
the prior distribution over z. p(zI |I) · q(z) is the
posterior distribution over z, which is usually an
isotropic Gaussian distribution N (0, I). In KDVI,
the posterior is q(zC |C), where zC is a hidden rep-
resentation of C. This new posterior allows us to
extract information from C to I by minimizing this KL
term: DKL[q(zC |C)||p(zI |I)]. This way, we transfer
knowledge and information from text to imaging.
During the training phase, we need both as input,
but in the testing phase, we only need the imaging
data. With this approach, we use our text-based
knowledge graph embeddings of the clinical report
to enhance the image representations.

4. Experiments and Results

Three datasets were used for training and evalua-
tion: MIMIC-CXR (Johnson et al., 2019), OpenI

(Demner-Fushman et al., 2016), and PadChest
(Bustos et al., 2020). MIMIC-CXR comprises
377,110 chest X-rays and 227,827 anonymized
radiology reports, with disease labels generated
using a rule-based labeler. OpenI consists of 7,470
chest X-rays and 3,955 anonymized reports with
similar disease labels. PadChest contains 160,000
radiology images and Spanish clinical reports with
174 disease labels. The disease labels from all
three datasets can be consolidated into a unified la-
bel space. There are no limitations on the number
of entities that can be extracted from the clinical
report using NER with MetaMap or on the number
of edges within a graph. We initialize the nodes us-
ing vectorized representations of individual UMLS
concepts, which are obtained by pre-training on
datasets containing (bio)medical data (Beam et al.,
2019). These 200-dimensional non-contextual em-
beddings are inspired by word2vec and can be di-
rectly integrated into our method without requiring
additional processing steps. Embedding initializa-
tions for si and gn are calculated by averaging the
node embeddings n over the sentence and the en-
tire graph, respectively.

Metric BioBERTPubMedBERTClinicalBERTOurs
AUC 0.920 0.946 0.974 0.948
Recall 0.840 0.846 0.868 0.850
Precision0.593 0.600 0.611 0.632
F1 0.688 0.713 0.726 0.726

Table 1: Comparison of our approach with baseline
models on MIMIC-CXR dataset

Metric BioBERTPubMedBERTClinicalBERTOurs
AUC 0.929 0.929 0.965 0.966
Recall 0.768 0.818 0.818 0.864
Precision0.560 0.571 0.602 0.625
F1 0.680 0.717 0.700 0.717

Table 2: Comparison of our approach with baseline
models on OpenI dataset

Metric BETO Bio-cli-52k Ours
AUC 0.881 0.918 0.966
Recall 0.509 0.678 0.841
Precision 0.219 0.490 0.545
F1 0.555 0.574 0.682

Table 3: Comparison of our approach with baseline
models

The graph attention encoder consists of 1, 3, 6,
or 12 consecutive graph attention layers with hid-
den sizes of 512, 1024, 2048, or 4094, and the
graph classification is performed using a multilayer
perceptron (MLP) with dimensions 512, 256, 14,
8, employing cross-entropy loss. The results are
reported using the AUC metric, in line with existing
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benchmarks, and the evaluation of VKD is con-
ducted with a latent space size of 2048 and 12 se-
quential graph attention layers for encoding. Other
hyperparameter settings are directly adopted from
(Chen et al., 2018), and a dropout rate of 0.5 is
applied to all layers of the architecture.

Training is performed on two NVIDIA GeForce
RTX 3090 GPUs, utilizing Adam optimizer with
early stopping and a tolerance of 1%. Tables 1,
2, and 3 present the disease classification results
obtained from our graph embedding approach, and
the results are shown for an encoder with a hid-
den size of 1024 and 3 graph attention layers,
which demonstrated the best overall performance.
Our method achieves comparable performance to
BioBERT and PubMedBERT, and slightly lower per-
formance compared to ClinicalBERT while utiliz-
ing significantly fewer parameters (Table 4). On
the Spanish PadChest dataset, our method outper-
forms BERT-based methods. This can be attributed
to the smaller training datasets of these models,
which are ten times smaller than their English coun-
terparts. Furthermore, our method exhibits faster
inference rates (samples per second) on GPU plat-
forms and performs relatively better on the smaller
OpenI dataset, highlighting the effectiveness of our
embedding for report representation without the
need for large datasets.

Dataset ClinicalBERT Ours
MIMIC-CXR (Recall) 0.564 0.528
MIMIC-CXR (Precision) 0.537 0.537
MIMIC-CXR (F1) 0.508 0.469
MIMIC-CXR (AUC) 0.838 0.825
OpenI (Recall) 0.581 0.579
OpenI (Precision) 0.533 0.528
OpenI (F1) 0.509 0.497
OpenI (AUC) 0.884 0.864
PadChest (Recall) 0.528 0.534
PadChest (Precision) 0.510 0.532
PadChest (F1) 0.480 0.474
PadChest (AUC) 0.814 0.821

Table 4: Classification Accuracy

Employing graphs within a multi-modal frame-
work can enhance our understanding of how ef-
fectively the graph captures intricate information
structures that can span across modalities. Table 4
presents the results of our method for multi-modal
knowledge transfer compared to existing methods
that utilize ClinicalBERT as a clinical report em-
bedding. Training this framework revealed that the
convergence of this model is complex for graphs
with shallow encoders and smaller hidden layers.
As a result, Table 4 displays results obtained with
an encoder comprising 12 graph attention layers
and a hidden size of 2048. While not outperform-
ing the existing ClinicalBERT method, graph em-
beddings demonstrate applicability on both MIMIC-

CXR and OpenI. Performance improvements are
observed compared to image-only classification, in-
dicating successful multi-modal knowledge transfer
with very limited pre-training data.

MIMIC-CXR OpenI PadChest
Full graph 0.930 0.946 0.950
w/o graph 0.924 0.939 0.940
w/o gn 0.917 0.931 0.933
w/o C 0.917 0.935 0.925
w/o gn&S&C 0.919 0.915 0.920

Table 5: Graph ablations on the classification tasks

Also, we delved into the application of graph en-
coders for disease classification, investigating the
influence of encoder count and hidden size on per-
formance. Parameter count emerges as a crucial
factor, with clinicalBERT delivering superior per-
formance but requiring greater computational re-
sources. The performance discrepancy between
the smallest, say, 0.4M parameters and the largest,
say, 62M parameters models is relatively minor,
indicating that graph construction effectively cap-
tures medical knowledge irrespective of encoder
size. Furthermore, we conducted an ablation study
on the graph components in Table 5. The impor-
tance of node types is highlighted by removing them
from the graph. The global node and edges con-
necting SNOMED CT concepts stand out as key
elements in the graph structure. This underscores
how the integration of report composition and the
medical knowledge base (SNOMED CT) yields a
rich representation of the report and shows how
our graph handles repeated terms more efficiently
than ClinicalBERT: ours consists of 34 nodes, while
tokenization with ClinicalBERT requires as many
as 124 tokens. For instance, our knowledge graph
captures the entire word such as ’dencities’, ’opaci-
ties’ as an entity, but ClinicalBERT, tokenizes into
’den’, ’cities’, ’o’, ’pa’, and ’cities’, respectively. The fi-
nal token in this sequence clearly carries a different
contextualized meaning within the general-purpose
language BERT model that underlies ClinicalBERT,
which demonstrates that graphs can capture medi-
cal terminology in a more intuitive and interpretable
way.

5. Conclusion

This paper presents a novel knowledge graph-
based method for creating structured represen-
tations of clinical reports. The knowledge graph
embeddings explicitly encode medical knowledge
from clinical knowledge bases, facilitating transfer
across domains and languages without relying on
large datasets. Concurrently, the proposed method
maintains a significantly smaller model size com-
pared to existing BERT-based models. By captur-
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ing both structural and content relationships embed-
ded within existing knowledge bases, the proposed
self-attention-based graph representations achieve
comparable performance to current state-of-the-art
transformer-based models in English and Span-
ish, resulting in more informative representations
of clinical reports. Our future scope is to extend
this architecture to Dutch, German, Estonian, and
more languages.
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