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Abstract
In this research, we propose a framework to generate human-like question-answer pairs with long or factoid answers
automatically and, based on them, automatically evaluate the quality of Retrieval-Augmented Generation (RAG). Our
framework can also create datasets that assess hallucination levels of Large Language Models (LLMs) by simulating
unanswerable questions. We then apply the framework to create a dataset of question-answer (QA) pairs based on
more than 1,000 leaflets about the medical and administrative procedures of a hospital. The dataset was evaluated
by hospital specialists, who confirmed that more than 50% of the QA pairs are applicable. Finally, we show that our
framework can be used to evaluate LLM performance by using Llama-2-13B fine-tuned in Dutch (Vanroy, 2023) with
the generated dataset, and show the method’s use in testing models with regard to answering unanswerable and
factoid questions appears promising.
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1. Introduction

Chatbots’ performance has been greatly enhanced
with recent advancements in RAG-based LLMs,
where questions are supported by verified sources
of information so that LLMs can answer consis-
tently and accurately. However, evaluating these
chatbots requires an enormous amount of labelled
data that is often costly to produce in terms of hu-
man and financial resources. Moreover, evaluation
datasets need to satisfy a few different criteria:

• Covers large knowledge base: A RAG
pipeline often includes thousands of docu-
ments in various topics and language levels
(scientific, conversational, etc.)

• Includes different types of answers: An-
swers can be factoid or long-form, depend-
ing on the type and format of questions.
There might also be unanswerable questions,
whether due to failure in the retriever or lack
of pre-trained knowledge.

Therefore, a proper evaluation workflow should
assess the chatbot’s knowledge across all the top-
ics covered in these documents and include all
types of questions users could ask. In this research,
we focus on automating the creation of a compre-
hensive QA dataset that satisfies the criteria above,
which leads to the following research questions:

1. How to cover all topics when creating the ques-
tions?

2. How to account for questions that cannot be
answered?

3. How to automatically generate and filter

question-answer pairs starting from a set of
documents?

4. To what extent can we compare LLMs’ perfor-
mance using generated data?

2. Related Work

The Question Generation (QG) branch of Natural
Language Processing (NLP) has been of great in-
terest recently due to the rising need for datasets
for chatbot evaluation.

Usually, these datasets are produced based on
a set of documents. In (Cohen et al., 2023), the au-
thors use the QA pairs to form a knowledge base us-
ing the dataset Probably-Asked Questions (Lewis
et al., 2021). Thus, QG can be perceived as a way
of augmenting data for QA systems. The dataset
mentioned before was also automatically gener-
ated for the task of Open-Domain Question Answer-
ing. It comprises 65 million questions in a four-step
process composed of passage selection, span an-
swer extraction based on named entities, question
generation, and filtering (Lewis et al., 2021). The
drawback of this method was that the generated
answers were very brief. The solution implemented
by the authors for this issue was to model the prob-
lem as a Long-Form Question-Answering one that
creates open-ended questions that require expla-
nation (Fan et al., 2019). The authors proposed
a query-based multi-document summarization ap-
proach with sequence-to-sequence models.

Regarding the different types of questions, it is
also possible to create them considering more so-
phisticated processes than reading comprehension.
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As presented in (Wang, 2022), questions may be
generated employing reasoning processes such
as common sense, finding the most logical con-
tinuation of a sentence, or using deduction and
induction given some premises to reach the correct
conclusion. On the other hand, various techniques
have also been proposed to remove irrelevant ques-
tions, such as n-gram similarity between question
and context or scores given by another LLM to the
quality of produced data (Yuan et al., 2022).

Detecting topics in texts is also one of the tasks
researchers have covered the most in NLP. Some
of them use Self-Organizing maps along with the k-
means algorithm (de Miranda et al., 2020), others
have focused on using graph nets for analyzing
text embeddings (Romanova, 2021), and also the
exploitation of temporal correlation in social media
posts has been utilized to detect topics (Comito
et al., 2019). Existing research tends to concentrate
on clustering, but there are additional steps needed
to transform raw text into meaningful topics.

3. Data

We perform experiments on a dataset of 1,320
leaflets (3,958 pages). These leaflets contain in-
formation in Dutch about different medical and ad-
ministrative procedures to help patients navigate
hospital services and find medical information. Fig-
ure 1 illustrates an example of one leaflet’s page
containing multiple sections. A section has a head-
ing and one or more paragraphs that can include
bullet points, tables, and images and can span
across multiple pages or columns.

Figure 1: Format of a leaflet page

4. Method

We propose a multi-step framework to automate
the creation process of the QA dataset, which is
shown in Figure 2. In the following sections, we will
discuss in detail each step.

Figure 2: Steps of the proposed framework

4.1. Section Extraction and Grouping
To ensure the uniqueness of the QA pairs, we cre-
ate targeted questions based on sections. Ques-
tions generated on each section instead of each
page or document are easier to evaluate automati-
cally (Yuan et al., 2022). To extract these sections,
we developed a PDF parser that considers font
characteristics such as size and style together with
the text structure and spacing between paragraphs.
The sections extracted incorrectly are labeled as
anomalies by BERTopic in a downstream topic de-
tection phase and are not considered afterward.
With our parser, we extracted 13,216 sections out of
1,320 digital leaflets, which are machine-readable.
The algorithm is presented in Appendix 8.

The size of chunks retrieved during RAG directly
influences the output quality. Rather than using
sections during RAG, we introduce the concept of
"emulated pages", obtained by sequentially group-
ing document sections. This approximates the size
of the original pages while avoiding the division of
sections, resulting in a median of 842 tokens and
a slight deviation from the general recommended
1000-token chunk size (Rameel Ahmad, 2024).

4.2. Formation of Topics
After that, we create questions based on the ex-
tracted sections. The leaflets are clustered into
groups based on the topics they covered, us-
ing BERTopic (Grootendorst, 2022) - a modelling
framework that extracts interpretable and concise
topics. To ensure BERTopic’s performance, two
main hyperparameters must be considered: em-
bedding’s dimensionality and minimum cluster size.

To evaluate the quality of the clusters for each
dimensionality of the embeddings, three groups of
metrics are used:

• Geometric: Silhouette score (Davies and
Bouldin, 1979a), Calinski-Harabasz (Caliński
and Harabasz, 1974), and Davies-Bouldin
(Davies and Bouldin, 1979b) indices.

• Robustness: Another interesting way to as-



206

sess the quality of clusters is adding noise to
the data (Davidson et al., 2001), in this case, to
the embeddings. Then, the higher the number
of embeddings clustered into the same group
with and without noise, the more robust the
clusters are.

• Document-cluster evaluation: If we assume
that only one topic is treated per document,
a reasonable metric for the clusters is that all
sections of a given document should ideally
belong to the same cluster (except for certain
exceptions, such as contact sections). If it is
known that the documents contain information
about different topics, this metric should be
ignored. If that is not the case, the higher
the matching, the better the clustering. The
expression 2 yields this metric, with di as the
metric for each document, sj the number of
sections belonging to topic j, N the number of
sections in the document, and M the number
of documents in the cluster.

di = max
j

(
sj
N

) ∗ 100 (1)

DC =

∑n
i=1 di
M

(2)

4.3. Cross-evaluation

Figure 3: Cross-evaluation setup

We designed a Cross-Evaluation (CE) method
for RAG-based LLMs inspired by classical machine
learning techniques. This method accounts for
unanswerable questions without external knowl-
edge bases by grouping the emulated pages into
disjoint information groups ("folds"). When faced
with an unanswerable question, the model re-
sponds with "I don’t know" instead of inventing an
answer, allowing us to evaluate its hallucination
level.

Figure 3 illustrates the CE setup that contains
the validation and test sets. Each has two folds
with a modifiable ratio of test-validation test. We
use the first set to compare the performance of
LLMs based on the metrics described in section
4.7, and then the second set to report the unbiased
performance of the best model.

Our CE setup involves two iterations for valida-
tion and two for testing. The folds are utilized in
each iteration as depicted in Figure 4. Specifically,

Figure 4: Use of folds while answering questions

all emulated pages from the answerable fold are
stored in the vector database (e.g., Qdrant (Qdrant,
2024)), and questions are posed based on both an-
swerable and unanswerable folds. Subsequently,
the metrics presented in section 4.7 are measured
for each iteration and averaged for each set, pro-
viding a comprehensive evaluation of the model’s
performance.

4.4. Creation of Folds

As presented in the section 4.2, the folds are cre-
ated based on the discovered topics. We use the
sections from these topics in a vectorized form rep-
resented by low-dimensionality embeddings cre-
ated by BERTopic. We designed a bottom-up hi-
erarchical approach to group the topics into folds.
This grouping enables us to use stratified sampling
based on topics within each fold to make the se-
lected sections as diverse as possible. Our algo-
rithm minimizes the probability of having overlap-
ping information in any pair of folds by maximizing
the folds’ distance in the embedding space and
removing the sections from common pages or doc-
uments that are in different folds.

Even though folds are represented in the CE
setup by groups of emulated chunks stored in the
vector database, we create the folds with sections
as the atomic unit. Hence, these folds can be
viewed from two perspectives:

• groups of sections from which we sample and
create questions

• groups of emulated chunks used during CE
that contain the sections

We choose to have two folds since we are only in-
terested in minimizing the probability of them having
overlapping information. Moreover, adding more
folds implicitly reduces the distance between them,
and two folds are sufficient to simulate unanswer-
able questions.
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4.4.1. Algorithm to Create the Folds

The algorithm is highly customizable, having the
following parameters: ratio of folds, test set per-
centage, number of sampled sections for creating
questions, and whether the folds should contain
sections from different pages or documents. As
shown in Figure 5, the procedure includes a series
of steps that will be described below.

Figure 5: Algorithm for creating folds

Since topics are represented by compact clus-
ters without outliers, as presented in section 5.2,
we clustered their centroids using the agglomera-
tive approach of the hierarchical clustering (Müllner,
2011). This approach is optimal since we can use
various linkage criteria between clusters and work-
ing only with the centroids makes the computation
extremely efficient. The distance between folds is
maximized by searching over the space defined by
the distance type (Euclidean or cosine) and linkage
criteria (single, complete, average, or ward).

After clustering with each set of hyperparame-
ters, the newly created clusters are evaluated by
computing the average of the single and average
linkage using the Euclidean distance. We chose
this distance to account for the space between all
points and, simultaneously, to weigh the distance
between the closest points more.

In the next step, sections that appear in pages
or documents with sections in both folds are re-
moved to avoid having common information in both
folds during the cross-evaluation. Next, we sample
pages or documents and their sections at the fold
level to create validation and test datasets of sec-
tions following the set ratio. This step returns two
folds for validation and two for test sets.

Finally, we employ stratified sampling within each
fold to select a set of diverse sections covering all
topics based on which questions are created. In
our setup, strata are groups of sections from the
same topic.

4.5. Types of Questions
For our purpose, we categorized the questions
based on two different criteria: if the question is an-
swerable based on the leaflets, and if the question
is factoid or long-form.

Long-form, open-ended questions assess the
machine’s ability to provide helpful advice based
on its database since the chatbot is expected to
interpret and explain information relevant to patient
inquiries. (e.g., "What is actigraphy and how can
it diagnose sleep problems in children?"). Mean-
while, factoid questions test the chatbot’s ability to
accurately retrieve facts (e.g., phone numbers or
email addresses). They verify if the LLM can locate
precise information without hallucinating and are
evaluated by a pass/fail metric. (e.g., "What is the
telephone number of the radiology department?")

4.6. Q&A Generation and Filtering
A two-stage approach is utilized to create the ques-
tion set for long-form and factoid questions: First,
a larger, diverse set of questions is generated in
Dutch using GPT-3.5-turbo-instruct (OpenAI, 2022).
Then, we filter the questions using embedding sim-
ilarity, ROUGE score (Lin, 2004) between the an-
swer and the section, and sorted by a score as-
signed by the model based on examples. Top ques-
tions are selected per source section to retain the
distribution of QAs concerning the data in the folds.
We present the details of this algorithm in Appendix
8.

For phone numbers and email addresses from
leaflets, we use the same two-stage mentioned
above to generate a question for each section and
the entity extracted from it, with a modification:
rather than assessing section-answer similarity, we
directly verify the presence and accuracy of the
email/phone number in both the answer and the
section.

In the first stage, 5000 QA pairs are generated.
The filtering steps reduce this to 500 pairs, with
each final question corresponding to one sample
section to avoid distorting the previous distribution
of samples.

4.7. Measured Metrics
Initially, hospital specialists will perform a qualitative
evaluation of the generated QA dataset. Only the
QA pairs labelled as correct are used in the cross-
evaluation procedure to test various LLMs.

Secondly, answers should be analyzed quantita-
tively. We compute the hallucination rate for every
answer - the percentage of unanswerable ques-
tions that would have been answered without the
proper information. However, these events could
not only be due to hallucination but also to a poor
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division in the folds. Therefore, we measure the per-
centage of answers where the correct information
has been given to evaluate factoid questions. For
long-form questions, we use the standard metric
for the long-answer questions: BLEU, ROUGE-1,
ROUGE-2, ROUGE-L, and BLEURT (Celikyilmaz
et al., 2020). Finally, humans evaluate the correct-
ness of an answer.

4.8. Using Folds to Evaluate Different
Models

A Dutch language model (given the data is in
Dutch), Llama-2-13B-Dutch with 8-bit quantization
(Vanroy, 2023) is human-evaluated to determine
how the method, and specifically the different folds,
can be used in order to determine how well cer-
tain LLMs perform. These are separated into three
distinct classes:

• The performance on long-form answerable
questions (folds 1 and 2). This performance
is the percentage of correctly answered ques-
tions evaluated by a human.

• The performance on long-form unanswerable
questions (with disjoint folds A and B, the con-
text of fold A is used for questions from fold B
and vice versa). In this way, our method can be
used to determine to what extent a model can
indicate that there is no answer to the question
based on the given context. This metric is de-
fined as the percentage of questions answered
by the model with an answer that makes it clear
that the model does not have enough informa-
tion to answer the question evaluated by a
human. Seventy-eight annotations are made
for both combinations of disjoint folds.

• The performance on answerable factoid ques-
tions. A fold F containing only factoid ques-
tions can be used to determine whether a
model can extract said factoids well. This
performance is defined as the percentage of
questions that are answered by the model with
an answer that correctly extracts the factoid
information evaluated by a human. Five an-
notations were made, given that five factoid
questions were present in the dataset.

5. Results

5.1. Formation of Topics
The performance of BERTopic with different values
for the hyperparameters "min_cluster_size" of the
HDBSCAN and "n_components" of the UMAP algo-
rithm is compared: 5, 10, 15, 20, 25, 30, 35, 40, 45, 50.

We set the number of topics to 200 a priori, con-
sidering that the number of leaflets and too many
clusters would result in too numerous topics. A

higher embedding dimensionality implies a larger
accuracy of the clustering algorithm, but less infor-
mation covering the section’s content will be kept.
Therefore, dimensional values under 10 are hardly
acceptable, so a trade-off solution should be cho-
sen. All this a priori knowledge goes along with the
results of the metrics, which are enumerated in the
following list:

• Geometry metrics: Depends on the minimum
cluster size: better results for small values (up
to 35). There is no clear dependence on the
embedding dimensionality.

• Robustness metrics: Better for intermediate
values of minimum cluster size (between 20
and 30) and highly depend on the dimension-
ality of the embedding, where high dimensions
(over 15) result in lower robustness. Here, re-
sults for high values of both variables are de-
ceitfully good only due to the lower quantity of
clusters. The same behavior is observed in
the document-cluster matching score.

• Document-cluster metrics: Highly depen-
dent on the minimum cluster size (which was
predictable). It is better to have a more in-
creased value, up to the extreme case of too
few clusters—no apparent dependence on em-
bedding dimensionality.

The interest lies in exploring different values for
hyperparameters, leading to the need for a trade-off
solution. While results on semantic coherence sug-
gest favoring fewer topics, geometry-based calcu-
lations indicate that more topics would better repre-
sent document information. Ultimately, we decided
to increase the embedding dimensions from the de-
fault 5 to 15. Similarly, the "min_cluster_size" will
be adjusted from the default 10 to 30 elements. The
number of clusters typically hovers around 70 top-
ics, which will be discussed in the following section.
Outliers are not a significant concern since they
remain within acceptable proportions, as demon-
strated in the implementation example of BERTopic.
Additionally, the abundance of labelled sections mit-
igates concerns about outliers.

These chosen hyperparameters balance geomet-
ric robustness metrics and the clustering of sections
within the same document, ensuring effective rep-
resentation.

5.2. Topic Analysis
This section analyzes two sets of topics created
with BERTopic. The main difference between
them is the transformer that creates each sec-
tion’s embeddings. The first one is built us-
ing distiluse-base-multilingual-cased-v1 (DBMC-
v1), a distilled version of the model presented in
(Yang et al., 2019). The second one is based on
paraphrase-multilingual-MiniLM-L12-v2 (PMM-L12-
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v2), a multilingual version of paraphrase-MiniLM-
L12-v2 (Reimers and Gurevych, 2019).

These topics are composed of sections repre-
sented as embeddings with 15 dimensions. Their
attributes are described in Table 1.

statistic DBMC-v1 PMM-L12-v2
min topic size 32 30

median topic size 66 79
max topic size 634 1063

topics no 71 62
outliers % 40.55% 32.17%

Table 1: Statistics of the generated topic clusters

Many sections are detected as outliers and not
included in any topics, leading to very compact clus-
ters represented well in space by their centroids.

Lastly, the data does not reveal any correlation
(-0.032 or -0.051, depending on the set of topics)
between cluster size and the minimum distance
from any cluster to the closest one. This indicates
that topics are not isolated based on size; they are
all positioned randomly in space.

5.3. Fold Analysis
As we have a parameterizable algorithm, we chose
a test set percentage of 20% and specified that
the two folds should contain sections from different
documents. After running the procedure presented
in section 4.4 with each set of topics created with
BERTopic, we found folds with enough sections to
build the validation and test sets only in the case
of four combinations of hyperparameters.

As shown in Table 2, the best results are obtained
for both sets of topics when the ward linkage crite-
rion is used together with the Euclidean distance.
The space between the folds increased between
6.7 and 8.21 times compared to the initial distance
between the topics.

set of topics DBMC-v1 DBMC-v1 DBMC-v1 PMM-L12-v2
linkage criterion ward complete complete ward

distance type Euclidean cosine Euclidean Euclidean
min dist topics 0.2783 0.2783 0.2783 0.2481
min dist folds 2.2882 1.923 1.8662 1.9548

small fold ratio 0.1175 0.3741 0.1574 0.4727
avg folds per doc 1.2104 1.3285 1.1208 1.3399
valid sections % 72.12% 55.84% 84.22% 55.28%

Table 2: Results of the hierarchical clustering

Our approach is better than forming a fold based
on the most isolated clusters because we create
them based on more topics. Regarding fold ratio,
the folds are almost even in the case of PMM-L12-
v2. The last two rows of Table 2 refer to the number
of valid sections from the perspective that the folds
contain sections from different documents. A larger
average fold per document implies that more sec-
tions must be filtered out. The remaining sections

are used to compose the 80-20 validation-test split,
followed by the stratified sampling step.

These sampled sections are the basis for cre-
ating questions rated by professionals. A large
enough and agreed-upon size to assess was 500.
The sections are selected concerning the folds ra-
tio rounded to the first decimal, meaning that for
PMM-L12-v2, we have a ratio of 0.5. This leads
to the next sizes: validation fold 1 - 200, validation
fold 2- 200, test fold 1- 50, and test fold 2 - 50.

To reduce human effort and focus on the higher-
quality set of questions, we will only use the sam-
pled sections in the case of PMM-L12-v2. In the
other scenario, even though the distance between
the folds is larger, the second fold is too small, re-
sulting in similar sections that do not cover the en-
tire scope of the information.

The final evaluation of these folds will be per-
formed during CE. That is the final check if any
overlapping information between folds is present.

5.4. Human Evaluation
Five hospital specialists annotated these 490 ques-
tions, the generated answers, and the reference
section. For each QA pair, the annotators were told
to choose one or more options: irrelevant question,
too specific question, wrong answer, incomplete or
ambiguous answer, correct answer, and, optionally,
to write a short feedback. Out of the total questions,
85 were double-annotated for quality control, one
wasn’t evaluated, and the remaining were reviewed
by a single random annotator from the pool of five.
The annotators jointly agreed in 64.71% of cases
and partially agreed in 15.29% of cases, meaning
that they picked multiple options, of which at least
one is the same.

Figure 6: Distribution of annotations

Figure 6 shows the distribution of annotations
for all questions except the 17 questions that pro-
duced a disagreement. A total of 278 questions
were labelled as having correct answers. In 28
cases named "other", the annotators did not pick
any predefined option but wrote a comment. Mostly,
comments refer to the fact that the question or an-
swer is too specific, the answer is incomplete, the
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question formulation is strange, or the answer tone
is offensive in only one instance. Out of the re-
viewed set, in only 12 cases, a "wrong answer" was
generated. This low number validates the quality
of the generated data.

Based on this feedback, we filtered the questions
to use only the ones labelled as having correct
answers in the cross-evaluation procedure.

5.5. Cross Evaluation Results

We used the dataset for cross-evaluation on the
GPT-3.5 Turbo model using 209 question-answer
pairs from two training folds, 76 from fold one
and 133 from fold two. The evaluation assesses
the model’s information retrieval capability and
response appropriateness along various metrics,
which are presented in Table 3.

Metric Fold One Fold Two
Using Fold One RAG (%) 57.33 7.52
Using Fold Two RAG (%) 12.00 62.41
BLEU Score 0.0734 0.0777
ROUGE-1 Score 0.312 0.261
ROUGE-2 Score 0.188 0.154
ROUGE-L Score 0.259 0.222
BLEURT Score 0.592 0.517
Facts Correctly Extracted (%) 20 -

Table 3: Cross-evaluation results for GPT-3.5 Turbo

5.5.1. Evaluation on Llama-2-13B-Dutch

The Llama-2-13B-Dutch model has been evaluated
using the folds to determine its performance on
questions it cannot answer. We consider a valid
reply if the model states that there is not enough
information to answer. Furthermore, the factoid fold
has been used to determine how well the model
can extract data from a context containing specific
factual information. These results can be seen in
Table 4, where Q1_CTX2 represents fold 1 with
context from disjoint fold 2, Q2_CTX1 represents
fold two with context from disjoint fold one, and
the Factoids Corr. % represents the percentage of
factoids correctly extracted by the LLM.

Q1_CTX2 Corr.
% (n=78)

Q2_CTX1 Corr.
% (n=78)

Factoids Corr.
% (n=5)

0 0 100

Table 4: Evaluation of unanswerable and factoid
questions

On the total 278 correct determined questions,
which are answerable, the model was further tested.
The results of the numerical evaluation are shown
in Table 5.

5.5.2. Answering When the Corresponding
RAG Pages are Loaded

To assess the system’s ability to retrieve informa-
tion correctly and to decline to answer in case no
information is available, we did a cross-evaluation
procedure presented in section 4.3, For this, we
expect that if the corresponding fold is loaded, the
model should try to answer all questions, while if
the unrelated documents are used, it should not
answer any of the questions.

The results are found in the first two rows of Table
3. Declines to answer were either hard-wired from
the failure of the retrieval or manually labeled if the
model declined to answer (even though the retrieval
gave some unrelated results).

5.6. Human Evaluation
With the human evaluation done by medical spe-
cialists, we can deduce that automatic question
and answer generation is a feasible way to create
relevant questions, as around 83,46% of questions
were considered by them as being relevant. Many
cases were flagged as irrelevant or having too spe-
cific questions, which might require adjusting, but
it also gives useful feedback on the level of speci-
ficity required for this type of chatbot. Having over
56.73% fully correct QA pairs means that a rea-
sonable portion can be used directly for evaluating
LLMs.

5.7. Cross-evaluation

5.7.1. Answerable and Unanswerable
Questions

The results show that the chatbot is unwilling to
answer around 40% of the answerable questions.
While we might need to consider that it is affected
by the style of questions we had, this leaves room
for improvement in the system, most likely in the
retrieval.

For cases when the data is not available, the chat-
bot correctly declines to answer around 90% of the
time, which exceeded our expectations. Consider-
ing that, seemingly, in most of the cases, it was not
due to the retrieval not giving any results, the LLM
decided that it did not have enough information.

5.7.2. Performance Metrics

All performance metrics should be treated as a
baseline for comparison with other models; on their
own, they might not give a clear picture of the an-
swer quality.

The results around 0.07 for BLEU are low, prob-
ably due to the LLM’s tendency to rephrase the
content, resulting in low N-gram overlap.
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BLEU
Score

BERTScore
Precision

BERTScore
Recall

BERTScore
F1

ROUGE-1
F-measure

ROUGE-L
F-measure

Results for tested models on verified dataset (n=278)
Llama-2-
13b-Dutch

17.9 0.761 0.833 0.793 0.466 0.417

Table 5: Llama2 results for answerable questions

The ROUGE scores vary between 0.15 and 0.3,
with Rouge-2 scores being the lowest. The 0.3
score might seem acceptable, but it needs to be
used as a comparative value.

In examining the BLEURT score, we recognize
that it got the highest values, with its 0.5-0.6 rat-
ings. As this metric is trained to better correlate
with human judgment, having a satisfactory rating
will give a better comparison later, once it can be
compared with other variants of the chatbot.

5.7.3. Factoid Questions

In this case, the chatbot underperformed by not
finding the correct address, although this is sta-
tistically insignificant since the number of factoid
questions was low.

5.7.4. Evaluation on Llama-2-13B-Dutch

The evaluation of the Llama-2-13B-Dutch language
model utilizes different folds to assess its perfor-
mance on answerable, unanswerable, and factoid
questions. Tables 2 and 5 demonstrate the effec-
tiveness of this method in evaluating model per-
formance across these aspects. Specifically, the
fine-tuned Dutch model struggles to identify unan-
swerable questions when contextually lacking nec-
essary information. However, it excels in extracting
factoid details and performs well on answerable
questions.

5.8. Limitations and Challenges
The proposed framework is limited; thus, the re-
sulting folds can be unbalanced. The PDF parser
that extracts the sections works only on a specific
type of leaflets and should be extended to be more
general. We have not found a way to ensure an ap-
proximate number of sections in each fold. Another
issue is that it requires humans in the loop to eval-
uate the QA pairs used during cross-evaluation.
Additionally, we create factoid questions only re-
lated to named entities such as phone numbers
and email addresses, while many more facts are
present in the leaflets. Additionally, regarding the
framework’s usability in assessing the performance
of models in answering answerable, unanswerable,
and factoid questions, an example containing two
folds of 78 questions, answers, and context triples
is quite limited. Furthermore, there were only five

factoid questions in the respective fold. Despite
these examples still showing the method’s poten-
tial, said sample sizes are relatively small, and
fold-specific evaluation has only been done for one
model. Future work expanding the evaluation of
this framework is therefore welcomed.

6. Conclusion

This research paper presented a framework for
evaluating RAG-based chatbots from a set of doc-
uments by automatically generating QA pairs and
employing a cross-evaluation procedure that ac-
counts for unanswerable questions. Our method
enables the comparison of LLMs using various met-
rics for assessing long-form and factoid questions.
The human evaluation results highlight the quality
of the produced QA pairs, with 83,46% relevant
questions and only 2.44% wrong answers. More-
over, although there are various limitations, we suc-
cessfully demonstrated that our framework can be
used to evaluate LLMs such as Llama-2-Dutch-13B
or GPT-3.5 Turbo with a dataset of hospital leaflets
for patients. The project’s source code and the
created dataset are publicly available at this link.

7. Acknowledgement

We acknowledge the Ziekenhuis Groep Twente
(Hospital Group Twente - ZGT), Hengelo, The
Netherlands for providing us with the leaflets and
the computing power, as well as for manually an-
notating the generated QA pairs.

8. Bibliographical References

Tadeusz Caliński and Jerzy Harabasz. 1974. A
dendrite method for cluster analysis. Communi-
cations in Statistics-theory and Methods, 3(1):1–
27.

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao.
2020. Evaluation of text generation: A survey.
arXiv preprint arXiv:2006.14799.

William W Cohen, Wenhu Chen, Michiel De Jong,
Nitish Gupta, Alessandro Presta, Pat Verga, and

https://github.com/Bindila-Bogdan/Auto-QA-Generation


212

John Wieting. 2023. Qa is the new kr: Question-
answer pairs as knowledge bases. In Proceed-
ings of the AAAI Conference on Artificial Intelli-
gence, volume 37, pages 15385–15392.

Carmela Comito, Agostino Forestiero, and Clara
Pizzuti. 2019. Word embedding based clus-
tering to detect topics in social media. In
IEEE/WIC/ACM International Conference on
Web Intelligence, WI ’19, page 192–199, New
York, NY, USA. Association for Computing Ma-
chinery.

George S Davidson, Brian N Wylie, and Kevin W
Boyack. 2001. Cluster stability and the use of
noise in interpretation of clustering. In Information
Visualization, IEEE Symposium on, pages 23–
23. IEEE Computer Society.

David L Davies and Donald W Bouldin. 1979a. A
cluster separation measure. IEEE transactions
on pattern analysis and machine intelligence,
(2):224–227.

David L. Davies and Donald W. Bouldin. 1979b. A
cluster separation measure. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
PAMI-1(2):224–227.

Guilherme Raiol de Miranda, Rodrigo Pasti, and
Leandro Nunes de Castro. 2020. Detecting top-
ics in documents by clustering word vectors. In
Distributed Computing and Artificial Intelligence,
16th International Conference, pages 235–243,
Cham. Springer International Publishing.

Angela Fan, Yacine Jernite, Ethan Perez, David
Grangier, Jason Weston, and Michael Auli. 2019.
Eli5: Long form question answering. arXiv
preprint arXiv:1907.09190.

Maarten Grootendorst. 2022. Bertopic: Neural
topic modeling with a class-based tf-idf proce-
dure.

LangChain, Inc. 2024. Output-fixing parser.
https://python.langchain.com/docs/
modules/model_io/output_parsers/
types/output_fixing. Accessed: 2024-02-
02.

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale
Minervini, Heinrich Küttler, Aleksandra Piktus,
Pontus Stenetorp, and Sebastian Riedel. 2021.
Paq: 65 million probably-asked questions and
what you can do with them. Transactions of
the Association for Computational Linguistics,
9:1098–1115.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summa-
rization Branches Out, pages 74–81, Barcelona,
Spain. Association for Computational Linguistics.

Daniel Müllner. 2011. Modern hierarchical, ag-
glomerative clustering algorithms. arXiv preprint
arXiv:1109.2378.

OpenAI. 2022. GPT-3.5 Turbo: Language
Model. https://platform.openai.com/
docs/models/gpt-3-5-turbo.

Qdrant. 2024. Qdrant vector database.

Syed Rameel Ahmad. 2024. Enhancing multilingual
information retrieval in mixed human resources
environments: A rag model implementation for
multicultural enterprise. arXiv e-prints, pages
arXiv–2401.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing. Association for Computational Lin-
guistics.

Alex Romanova. 2021. Detect text topics by se-
mantics graphs. In Proceedings of the 2nd Inter-
national Conference on Blockchain and Internet
of Things (BIoT 2021), volume 11.

Bram Vanroy. 2023. Language resources for dutch
large language modelling.

Zhen Wang. 2022. Modern question answering
datasets and benchmarks: A survey.

Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy Guo,
Jax Law, Noah Constant, Gustavo Hernandez
Abrego, Steve Yuan, Chris Tar, Yun-Hsuan Sung,
et al. 2019. Multilingual universal sentence
encoder for semantic retrieval. arXiv preprint
arXiv:1907.04307.

Xingdi Yuan, Tong Wang, Yen-Hsiang Wang,
Emery Fine, Rania Abdelghani, Pauline Lu-
cas, Hélène Sauzéon, and Pierre-Yves Oudeyer.
2022. Selecting better samples from pre-trained
llms: A case study on question generation. arXiv
preprint arXiv:2209.11000.

Appendix A: PDF Parser for Section
Extraction

The algorithm for parsing the PDF leaflets has the
following steps:

1. set manually the area of interest that contains
the text and excludes the header and footer
with metadata such as page number and date

2. find the majority font size associated with each
line of text

https://doi.org/10.1145/3350546.3352518
https://doi.org/10.1145/3350546.3352518
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1109/TPAMI.1979.4766909
http://arxiv.org/abs/2203.05794
http://arxiv.org/abs/2203.05794
http://arxiv.org/abs/2203.05794
https://python.langchain.com/docs/modules/model_io/output_parsers/types/output_fixing
https://python.langchain.com/docs/modules/model_io/output_parsers/types/output_fixing
https://python.langchain.com/docs/modules/model_io/output_parsers/types/output_fixing
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://qdrant.tech
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/2312.12852
http://arxiv.org/abs/2312.12852
http://arxiv.org/abs/2206.15030
http://arxiv.org/abs/2206.15030


213

3. divide the PDF into groups of paragraphs,
called sections, based on two delimiters: if the
space between them is larger than average, or
if a line of text written in a larger-than-average
font is encountered

4. handles the case where entire paragraphs are
written in a larger font, and each line is rec-
ognized as a separate section, merging them
into a section without a header

5. merge sections that do not have a header with
the previous section and header-only sections
with the following sections

Our approach works even in edge cases, cor-
rectly separating sections that span multiple pages,
contain bullet points, or have paragraphs delimited
in various ways. The goal is to extract all sections
while minimizing the number of detections as a
section of a group of sections or a part of a section.

The parser was designed specifically for this
dataset while testing it on 11 representative PDFs,
including a comprehensive set of edge cases. It
was then manually verified with a larger random
samp

Appendix B: Generation of
Question-Answer Pairs

B.1 Long-Form Questions

An instruction-tuned LLM was utilized to produce
a wide range of naturally formed questions with-
out much constraint on the type of questions cre-
ated. However, the quality of the questions is highly
dependent on the model’s performance on these
tasks. A factor that made the task more difficult
was that the questions needed to be generated in
Dutch. We used GPT 3.5 for this purpose, which
does support Dutch.

For the language model to give us the needed
text, we needed to create instructions that precisely
explained the task. This was done by creating a
custom prompt for the task and progressively im-
proving it. The prompt was created in Dutch, as this
seemed to cause the LLM to reliably continue us-
ing the language upon asking for completion. The
prompt describes the main task and "domain" and
includes the selected section.

Since we had a few examples of question-answer
pairs, we used them to employ a few-shot prompt-
ing techniques. This helped the model find the right
tone and length for the reference answers.

As another factor to increase the variance of the
questions, we added a few random roles like "recov-
ering patient", "elderly patient", or "parent of a sick

Figure 7: Long-form question generation workflow

child" so that the model creates more varied sce-
narios. During use, certain additions were made to
the prompt to create more suitable questions.

To make the output machine parseable, we de-
cided on a JSON scheme. The model struggled
to follow these precisely enough, so the scheme
description and instruction, but repeating the in-
structions at the beginning and end of the prompt,
seemed to improve the rate of successful gener-
ation. Even with the changes, we still had sev-
eral cases where the model failed to follow the
scheme properly. As an additional step, "output
fixing LLM"(LangChain, Inc., 2024) was employed
to transform the faulty answers to the scheme. This
was done since fixing the format was less costly
than retrying the generation, and fixing the scheme
was more reliable than the generation.

Filtering During the generation stage, we created
more questions than we needed; however, most
were not unique or high-quality enough.

We used cosine similarity on the question em-
beddings to filter out repeating or similar questions.
Then, we executed a "drop out," where we dis-
carded one for highly related questions until we
reached the desired threshold.

We tried to ensure that the generated Q-A pair
was related to the source. Unfortunately, there were
quite a few cases where the model got "inspired"
by the few-shot example and created content re-
lated to that over the context. We used ROUGE
as a similarity metric with a low threshold on the
generated answer and the context.

We needed to remove the questions that could’ve
been considered "Short-form factoid" questions to
avoid accidentally mixing the two types. To remove
these, a basic rule was implemented. All questions
that had a short answer and contained one of the
Entity types we chose to extract were discarded.
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B.2 Factoid Questions
We wanted to ask some highly targeted questions
to evaluate the chatbot’s ability to recite small infor-
mation sections. This was necessitated because
every time the model could not answer, the user
might ask for a way to contact a human, which, in
the hospital’s case, would be the already existing
contact phone number or address related to the
topic. Many of these direct contacts were already
included in the flyers we used.

Figure 8: Factoid question generation workflow

Entity Extraction For extracting entities of interest,
we experimented with some different options. Even
though there are many Named Entity Recognition
software, such as Flare, we decided to only include
the most basic regex-based "phone number" and
"email" extractions, as these types of data created
direct questions that were suitable for our purpose.

Generation Similarly to the previously mentioned
long-form generation, we used an LLM. The main
difference was in the instruction. In addition to the
context, the selected fact was provided, and all
other details and examples were modified to fit the
new format.

Filtering The questions were filtered by doing a
back check on the answer, verifying that the original
"fact" is extractable.

Similarly to the long-form questions, the factoid
questions were filtered by their embeddings’ cosine
similarity.

The correctness of the extracted entities was
verified at the end of this step and during the human
evaluation step.
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