
 
 

Abstract 

This paper will attempt to determine 

experimentally if POS tagging of unseen 

words produces comparable performance, 

in terms of accuracy, as for words that were 

rarely seen in the training set (i.e. frequency 

less than 5), or more frequently seen (i.e. 

frequency greater than 10). To compare 

accuracies objectively, we will use the odds 

ratio statistic and its confidence interval 

testing to show that odds of being correct 

on unseen words are close to odds of being 

correct on rarely seen words. For the 

training of the POS taggers, we use 

different Romanian BERT models that are 

freely available on HuggingFace. 

Keywords: BERT, POS tagging, 

Romanian, odds ratio, POS learning. 

1 Introduction 

Transformer models (Vaswani et al., 2023) and 

Deep Learning have changed the face of Natural 

Language Processing (NLP) domain, with a huge 

number of papers reporting superior performances 

of any conceivable task of NLP, including machine 

translation, question answering (which is now 

handled almost flawlessly by generative Large 

Language Models), and language analysis (POS 

tagging, dependency parsing, word sense 

disambiguation, etc.) 

Transformer models are very good at any NLP 

task, provided they are pre-trained on very large 

corpora (billions of words) at supervised tasks 

such as masked language modeling or next 

sentence prediction (Devlin et al., 2019) and then, 

fine-tuned to the task at hand, e.g. POS tagging. 

Central to the Transformer models’ remarkable 

ability to learn syntagmatic information about 

words is the attention mechanism (Vaswani et al., 

2023), which encodes co-occurrence information 

in a large window of tokens (typically 512 tokens) 

for a large vocabulary of tokens (typically 50K 

tokens). 

Comparatively, the number of papers dealing 

with the subject of how the Transformer model is 

learning a language (or multiple languages at 

once), which presumably makes them so good at 

any language processing task, is very small with 

respect to the number of papers presenting 

extensions of the model, accuracy improvements, 

applications, and so on. 

With this paper, we want to contribute to the set 

of papers taping into the learning mechanisms of 

the Transformer models, and we present a study on 

if and how the BERT models (a type of 

Transformer models) learn the grammatical 

categories (e.g. noun, verb, article, determiner, etc.) 

of a word in its context (i.e. POS tagging with a 

smaller tagset). We focus on Romanian, and we use 

Romanian-specific BERT models for the job. We 

will try to experimentally prove that BERT models 

have about the same accuracy on unseen (during 

training) words as on words that were rarely seen. 

Furthermore, the accuracy of frequently seen 

words is not that much higher than the accuracy of 

unseen words. To quantify these comparisons, we 

will use the odds ratio statistic. 
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2 Related work 

Experiments on how POS taggers work on words 

not seen during training were performed more than 

20 years ago, at the time when POS taggers were 

actively developed using e.g. Hidden Markov 

Models. An example in this regard is the work by 

Dematas and Kokkinakis (1995), which addresses 

the POS tagging of unseen words with enhanced 

HMMs. At that time, the best tagging accuracy on 

these words was about 66% for English. 

Kim and Smolensky (2021) investigated the 

ability of pre-trained Transformer models (i.e. 

BERT-large, Devlin et al., 2019) to perform 

grammatical category-based generalization of 

novel words, after being finetuned on limited 

contexts (without categorization-specific training). 

Inspired by an experimental design in which 

infants were familiarized to contexts containing 

novel words and then tested with new sentences 

that either obeyed or violated category-based co-

occurrence restrictions, the authors assumed that a 

Masked Language Model’s (MLM) ability to 

assign a higher probability to a word in a novel 

context that obeys the co-occurrence restriction for 

that category (over a word that does not) means the 

MLM makes a valid grammatical category 

inference about a novel word. 

The two-step method involves finetuning the 

MLM on two signal contexts that unambiguously 

mark the novel words (𝑤1 and 𝑤2) grammatical 

categories and testing the fine-tuned model by 

comparing the probabilities of 𝑤1 and 𝑤2 on 

multiple test contexts (higher probability to the new 

word in the correct test context meaning accurate 

category inference). 

The signal and test contexts are based on MNLI 

corpus (Williams et al., 2018), that had different 

sources from the model’s pre-training data. A fine-

tuning set contains two signal contexts with one 

unseen word each (𝑤1 and 𝑤2) and 400 test 

contexts, 200 for each grammatical category 

(MNLI-sampled sentences in wich words with 

grammatical categories of interest are masked out). 

Six English datasets that test for the binary 

classification between the four open-class 

grammatical categories (noun, verb, adjective and 

adverb) were constructed. 

To use “unknown” words and make the BERT-

large model to “forget” learned words, random 

weights were used for the unknown words’ 

embeddings. The BERT-large model was finetuned 

for 70 epochs and accuracy was tested at a 

significance level of p < 5% with a one proportion 

z-test. Conclusions were as follows: 

1. accuracy largely varied between category 

pairs, from 67.3% for noun vs. adverb to 

88.1% for noun vs. verb. 

2. category inference was quite slow in 

comparison to competent speakers’ 

performances who often can solve the task 

from a single example.  

In another study targeted at “what contextual 

representations encode that conventional 

embeddings do not?”, Tenney et al. (2019) 

compare conventional word embeddings to 

Transformer-generated word embeddings, which 

they call “contextual embeddings”. For this 

purpose, they propose to probe a contextual 

embeddings model based on a simple architecture 

employing span representations and binary 

classifiers. In their approach, a span corresponds to 

a word or a sequence of words and the classifiers 

are trained to predict specific labels. The authors 

call this approach “edge probing”. For part-of-

speech (POS) tagging, the OntoNotes (Weischedel 

et al., 2013) corpus is used (even though the authors 

investigate other tasks as well, making use of 

OntoNotes or additional corpora). The span for 

which a prediction is made corresponds to a single 

word. The classifiers are trained to predict 

individual part of speech tags (such as noun, verb, 

adjective, etc.) for the current word. The authors 

explore 4 contextual encoder models:  CoVe 

(McCann et al., 2017), ELMo (Peters et al., 2018), 

OpenAI GPT (Radford et al., 2018), and BERT 

(Devlin et al., 2019). The models’ weights are not 

fine-tuned. For BERT and GPT, contextual word 

vectors are obtained using two methods: 

concatenation of the subword embeddings with the 

activations of the top layer, or a linear combination 

of layer activations (including embeddings) using 

learned task-specific scalars. The authors compare 

the results of the entire model with so-called 

“lexical baselines” in which the probing model is 

trained only on the most closely related context-

independent word representations (for example in 

the case of ELMo, only the activations of the 

context-independent character-CNN layer (layer 0) 

are used). Regarding POS tagging, the BERT 

models outperform the other models (with BERT-

base, using a concatenation approach, achieving 

the highest F1 score). In all cases, using the full 

models outperform the “lexical baselines”, while 
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ELMo “lexical baseline” outperforms the others. 

The authors consider that the results suggest that 

ELMo encodes local type information. In addition, 

the authors try to estimate how much information 

is derived from long distance tokens. Their original 

architecture is extended with a CNN layer of width 

3 (considering one token to the left and one to the 

right). This addition significantly reduces the gap 

between a “lexical baseline” ELMo and the full 

model, indicating that ELMo improvements are 

due to the encoding of long-range information. 

Metheniti et al. (2022) report on experiments in 

which several Transformer models (BERT (Devlin 

et al., 2019), RoBERTa (Liu et al., 2019), XLNet 

(Yang et al., 2019), ALBERT (Lan et al., 2019)) are 

tested with respect to their ability to capture 

information about telicity and duration of verbs. 

While these semantic features are not directly 

related to grammatical category learning, their 

study represents another very good example of 

analyzing how Transformer models learn the 

language. 

An action is telic if it has an end point and atelic 

otherwise. Durative verbs describe an action, while 

stative verbs describe states. The authors work with 

English and French, and in one experiment, they 

fine-tune the transformer models for binary 

sequence classification of telicity and duration 

(separately), and of testing their accuracy on 

predicting these features. For fine-tuning they use 

a set of sentences annotated for these features. 

In another experiment, no fine-tuning was 

performed. Instead, a logistic regression to the 

contextual embeddings of each layer is applied, as 

provided by the pre-trained models. Contextual 

word embeddings for the annotated verbs are 

extracted from each layer of the transformer model 

and a logistic regression model is trained to classify 

telicity and duration, to understand how much such 

information was learned by each layer. 

For classifying telicity, all systems obtain an 

accuracy above 80% and it improved when training 

the models with the extra information of verb 

position in the sentence. BERT (both base and 

large) had the best results. 

For classifying duration, the results are even 

better (higher than 93%), despite using a smaller 

dataset. No improvement could be noticed when 

 
1 https://huggingface.co/readerbench  
2 
https://github.com/UniversalDependencies/UD_Romanian-

RRT  

training the models with the extra information of 

verb position in the sentence. BERT was also the 

best performing. 

An error analysis showed that conflicting 

characteristics of the linguistic context prevent the 

correct analysis: e.g., sentences where the verb or 

the verbal phrase would be considered (a)telic, but 

part of the context defines the temporal aspect of 

the sentence in the opposite way. 

For French, the results are not as good as for 

English, probably because of the characteristics of 

the French verbal system. 

Contextual embeddings proved to be an efficient 

way to encode the aspectual information of a verb 

and its interaction with its context, and this 

knowledge is probably already learned in the pre-

training process. 

3 RoBERT models 

RoBERT1 is a Romanian-only, pre-trained BERT 

model. Masala et al. (2020) developed this model 

to address the gap in pre-trained language models 

for languages other than English. The model was 

designed similarly to BERT with small, base, and 

large variants, having the same number of layers, 

hidden params, and attention heads. The training 

time in hours for each model was 28, 77, and 255, 

respectively, training for 40 epochs on a v3-8 TPU 

on two supervised tasks: masked language 

modeling and next sentence prediction. The 

Romanian dataset that was used for training was 

comprised of 3 sources, totaling 2.07B words. 

Without dwelling into details, the RoBERT 

models outperform the competition in several 

tasks, namely mBERT (Devlin et al., 2019), XLM-

RoBERTa (Conneau et al., 2020), and the only true 

Romanian BERT model at that time, BERT-base-ro 

(Dumitrescu et al., 2020). 

4 Experiments 

4.1 Preliminaries 

In our experiments we use the RoRefTrees (RRT) 

Romanian UD corpus2 (Barbu Mititelu, 2018), 

currently at version 2.13. The corpus is pre-split 

into the train, dev and test sets and we join the dev 

and test sets into a bigger test set, while only 
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training on the train set. All accuracy results that 

are presented in the next sections are computed 

over this bigger test set. 

Since, for the time being, we are interested in 

how BERT models learn the grammatical 

categories, and only the grammatical categories 

without any other morphosyntactic attributes such 

as number, gender, tense, etc., we selected the POS 

and its type to comprise the grammatical category 

label to target the training for. We ended up with 35 

categories, as follows: 

• Proper and common nouns and numerals. 

• Main and auxiliary verbs. 

• Adjectives and adverbs. 

• Abbreviations (of different types, e.g. 

nominal, adjectival, adverbial, etc.). 

• Pronouns and determiners of different types 

(e.g. personal, demonstrative, reflexive, 

indefinite, etc.) 

• Articles (possessive, indefinite) 

• Prepositions 

• Conjunctions (coordinative, subordinative) 

• Particles (infinitive, negative). 

We further split the set of grammatical categories 

into two subsets: the content words set which 

contains all categories of “meaning bearing” words 

(proper and common nouns, main verbs, general 

adverbs, adjectives, numerals, and abbreviations) 

and the set of functional words which is the 

complement of the full set of categories with 

respect to the content words set. The reason we 

consider these subsets is that the rarely seen and the 

unseen words in the test set vastly belong to the 

content words set (see Table 2, below), and 

computing accuracies including functional words 

would yield an unfair advantage to the words that 

are seen frequently in the training set. 

Table 1 presents statistics of the content and 

functional words in the RRT, in each split and Table 

2 shows how different word types from dev plus 

test splits are distributed at F = 0 (do not appear at 

all in the train split), F = 1 (appear once in the train 

split) and F > 1 (appear more than once in the train 

split). 

 

 Cont. Func. Punc. 

train 92,694 68,740 23,691 

dev 8,633 6,217 2,223 

test 8,277 5,964 2,083 

Table 1: RRT word type statistics 

 F = 0 F = 1 F > 1 

Content 3,185 1,702 12,023 

Functional 39 19 12123 

Table 2: Word count distribution by frequency for the 

dev plus test bigger test set 

4.2 Testing methodology 

The BERT models are fitted with a POS 

classification layer on top of the last hidden state of 

each token. The POS layer has 35 dimensions, one 

for each considered grammatical category, and it is 

trained with a softmax learning objective. We also 

update the BERT model’s parameters in the 

backward propagation stage. The starting learning 

rate parameter is set at 10−5 and it is decreased by 

a factor of 0.9 every epoch, out of the 5 training 

epochs. 

We will attempt to experimentally prove the 

following hypothesis: the POS tagging of unseen 

words (i.e. in the training set) is as accurate as POS 

training of words that were seen in the training set. 

We will measure the odds ratio (𝑂𝑅, Bland and 

Altman, 2000) of the odds of being correct vs. 

being incorrect when the frequency F of the 

targeted words is greater than 0 compared to when 

F is 0 in the training set. Thus, we compute the 𝑂𝑅 

fraction from the following contingency table: 

 

 F > 0 F = 0 

Correct 𝑝𝑐 𝑞𝑐 

Incorrect 1 − 𝑝𝑐 1 − 𝑞𝑐 

Table 3:  𝑂𝑅 contingency table 

as 

𝑂𝑅 =

𝑝𝑐
1 − 𝑝𝑐
𝑞𝑐

1 − 𝑞𝑐

=
𝑝𝑐(1 − 𝑞𝑐)

𝑞𝑐(1 − 𝑝𝑐)
 

and show that it is close to 1, in a confidence 

interval that forbids rejecting the null hypothesis of 

it being different than 1. In the above equation, 𝑝𝑐 

and 𝑞𝑐 are the probabilities of being correct in the 

chosen sample (i.e. the ratio of correctly tagged 

words out of all tagged words in the sample). 

We will only target words that belong to the 

chosen BERT model vocabulary, such that the 

evaluated word is not split into sub-words by the 

WordPiece tokenizer. We enforce this constraint for 

two reasons: 
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1. We do not want to average BERT 

representations of sub-words to obtain a 

representation for the full word, because the 

average of embeddings is not necessarily the 

equivalent of producing the true 

representation of the full word. 

2. We are interested in a study targeting the 

specific dimensions of a word representation 

that mostly decide its grammatical category. 

Finally, as previously mentioned, we only 

compute and compare odds ratios for content 

words, for the reasons explained above. 

4.3 Results with the RoBERT models 

We trained the readerbench/RoBERT-small, 

readerbench/RoBERT-base and 

readerbench/RoBERT-large models from 

HuggingFace the way we described previously. 

Table 4 presents an overview of the accuracies we 

obtained on the POS tagging task, with the 35 POS 

labels, on all words (content and functional), at 

different frequency thresholds, as shown in the 

table’s header. 

 

 F ≥ 0 F = 0 F = 1 F > 0 

small 96.5% 92.6% 90.9% 96.6% 

base 97.9% 92.6% 94.8% 98% 

large 96.5% 93.3% 93.1% 96.6% 

Table 4: Accuracy on content and functional words 

Table 5 below shows the same accuracy figures, 

but only for content words POS tagging. 

 

 F ≥ 0 F = 0 F = 1 F > 0 

small 93.8% 92.9% 89.4% 93.9% 

base 96.4% 92.7% 94% 96.7% 

large 96.5% 93.5% 92.4% 95.5% 

Table 5: Accuracy on content words only 

One thing we see from Tables 4 and 5 is that the 

large model is better at tagging unseen words while 

the base model is better at everything else. 

Comparing the values of the accuracy figure from 

Table 5 for F = 0 and F > 0, we see differences of 

at least 1%. This could suggest that the model is not 

able to learn the grammatical categories of 

unknown words, but this conclusion is going to be 

amended when we plot odds ratios at different 

frequency bands. 

Figures 1 to 3 show the odds ratios plot, for each 

of the RoBERT models, computed as in Table 3 for 

content words only. Thus, we have the 𝑂𝑅 on the Y 

axis, while on the X axis we have a frequency step 

of 1 for which the Table 3 F > 0 condition holds: 1, 

1 and 2, 1 to 3, …, 1 to 10, …, 1 to 20, etc. We show 

the current sample (dev plus test) 𝑂𝑅 variation in 

blue with dots, the low value of the confidence 

interval (CI) in orange with downward arrows and 

the high value of the CI in green with upward 

arrows, considering a 95% level of confidence. 

RoBERT-small and RoBERT-large models show 

that the sample 𝑂𝑅 statistic is close to 1 when F < 

3: 1 for the small model and 1.4 for the large model. 

That is, being correct on unseen words happens at 

about the same rate as being correct on rarely seen 

words. Going up the frequency range, the 𝑂𝑅 starts 

to increase in all cases: models learn to 

disambiguate the more frequently occurring words 

better, because they have seen more contexts of 

those words. Lastly, in all three plots we see that 

the sample 𝑂𝑅 statistic sits comfortably within the 

limits of its CI, meaning that the value is very likely 

to be correct, and not smaller or greater than what 

we got. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: RoBERT-small OR variation with frequency 

 

 

 

 

 

 

 

 

 

Figure 2: RoBERT-base OR variation with frequency 

 

Proceedings of CLIB 2024

10



 
 

 

 

 

 

 

 

 

Figure 3: RoBERT-large OR variation with frequency 

The RoBERT-base model is different, with the 

sample 𝑂𝑅 settling around 2 for F < 3 indicating 

that this model is more likely to be correct when 

words have been barely seen in the training. By the 

time the frequency range gets to 10, the 𝑂𝑅 statistic 

is 3, more than twice the one from the other two 

models. 

4.4 Results with the CoRoLa BERT model 

We previously trained a small BERT model (of 

approximately the same size as the RoBERT-small 

model) on the CoRoLA reference corpus for the 

contemporary Romanian language (Barbu Mititelu 

et al., 2019). We intended to use this model to study 

how a Transformer encoder learns the grammar of 

a language (in our case, Romanian). The model 

uses a vocabulary that is 13 times bigger than 

RoBERT’s, wishing to account for the inflected 

nature of Romanian. The CoRoLa train set had just 

over 760 million words, and the CoRoLA BERT 

model was trained with the Masked Language 

Modeling training objective. 

Table 6 shows accuracies at different 

frequencies, for all words (content plus functional) 

and for content words only. 

 

 F ≥ 0 F = 0 F = 1 F > 0 

All 93.8% 76.9% 89.6% 95.8% 

Cont. 91.4% 77.3% 90.1% 94.4% 

Table 6: CoRoLa BERT accuracy 

We can compare these figures with the RoBERT-

small’s accuracies (Tables 4 and 5), as CoRoLa 

BERT is about the same size, parameter-wise. 

While RoBERT-small outperforms CoRoLa BERT 

at all categories, except for the accuracy on content 

words when the frequency F > 0, the biggest 

difference is when F = 0: more than 15 percents in 

favor of RoBERT-small. There are two 

explanations for this: 

1. CoRoLa BERT has been under pre-trained 

for its massive vocabulary, which has 500K 

words vs. 38K words of RoBERT-small’s. 

We pre-trained on only 760M words while 

RoBERT-small model was pre-trained on 2B 

words. 

2. We only evaluate on words from the model’s 

vocabulary, and thus, CoRoLa BERT is 

evaluated on many more words than 

RoBERT, at all frequency thresholds, 

because its vocabulary is much bigger. Just 

for the sake of comparison, RoBERT 

tokenizer recognizes 18K word occurrences 

in our test set while CoRoLa BERT 

tokenizer recognizes 27K word occurrences. 

When we plot the variation of the 𝑂𝑅 statistic 

with the frequency, as we did for the RoBERT 

models, we see the picture of an undertrained 

BERT model (see Figure 4, below). 
 

 

 

 

 

 

 

 

 

 

 

Figure 4: CoRoLa BERT OR variation with frequency 

For F ≤ 3, the 𝑂𝑅 statistic is already 3.5 and the 

function quickly increases, showing that this BERT 

model can do better POS tagging only on seen 

during training words. 

4.5 A dimension-by-dimension hidden state 

analysis for POS tagging 

The RoBERT-small and the CoRoLa BERT models 

have the same size of the hidden state vector: 256 

dimensions, counted from 0 to 255. We wanted to 

know if we can find a common subset of 

dimensions that are responsible for the correct 

classification of each grammatical category.  

To obtain the subset of dimensions that 

contribute the most to the output layer’s highest 

probable grammatical category, we can use the 

output layer weight matrix from which we extract 

the row corresponding to the index of the most 
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probable grammatical category and multiply it, 

element-wise, with the hidden state of our target 

word. From the obtained vector, we extract the 

indexes of the top 10 largest elements, as the 

dimensions of the model hidden state that 

contribute the most to the correct grammatical 

category classification. 

If we compute the most important 10 dimensions 

for each correctly classified word in the test set, we 

can derive a conditional probability distribution for 

each of the 35 grammatical categories, for both 

RoBERT-small and CoRoLa BERT. Table 7 shows 

which dimensions have been found as being 

common between RoBERT-small and CoRoLa 

BERT, for each grammatical category3, with their 

sum of conditional probabilities. 

 

cat ∑ 

P(d|cat) 

∑ 

Q(d|cat) 

Common d 

Af 0.120 0.184 255, 28, 138, 31 

Cc 0.037 0.066 77 

Cr 0.068 0.112 213, 113 

Cs 0.075 0.098 59, 10 
Dd 0.043 0.012 52 

Di 0.197 0.146 26, 65, 5, 84 

Ds 0.024 0.013 22 

Dw 0.137 0.171 147, 196, 104 

Mc 0.152 0.239 88, 67, 218, 40, 

197 
Mo 0.044 0.048 101, 113 

Nc 0.024 0.017 160 

Pd 0.142 0.230 134, 141, 1, 9, 

213, 143 

Pp 0.072 0.160 234, 213, 11 
Pw 0.061 0.102 234, 31 

Px 0.010 0.012 103 

Pz 0.110 0.155 220, 146, 187 

Qn 0.105 0.110 5, 32 

Qs 0.160 0.130 239, 249, 112, 

128 

Qz 0.038 0.017 74 

Rc 0.052 0.101 212, 241 

Rg 0.015 0.066 167 

Rp 0.057 0.236 119, 115, 104 

Sp 0.164 0.053 109, 134, 112 

Tf 0.117 0.096 94, 192, 62 
Ti 0.054 0.112 47, 22 

Ts 0.098 0.113 36, 145 

 
3 For an explanation of the grammatical category 

codes, one can consult the MSD definitions from 

https://nl.ijs.si/ME/V6/msd/html/msd-ro.html 

Va 0.041 0.139 49, 0 

Vm 0.095 0.070 157, 193 

Yn 0.084 0.072 255, 102, 179 

Table 7: CoRoLa BERT and RoBERT-small common 

dimensions per grammatical category 

From the cumulative probabilities of CoRoLa 

BERT (∑ P(d|cat)) and RoBERT-small (∑ 

Q(d|cat)), we see that the common dimensions do 

not carry a lot of the whole probability mass for a 

category. If the sums of the probabilities had been 

higher for both models (say above 0.5), that would 

have been an indication that the common set of 

categories is important for both models, but this is 

not the case here. Thus, we can conclude that 

different BERT models do not assign the same 

importance to the same dimensions for a given 

grammatical category. 

5 Conclusions 

We have presented evidence that properly trained 

BERT models exhibit learning words’ grammatical 

categories, especially when the words were not 

seen during the training process. We drew this 

conclusion by measuring the odds ratio of POS 

tagging accuracy when the frequency of the test 

words (in the train set) is greater than 0 vs. when 

this frequency is 0. Thus, models RoBERT-small 

and RoBERT-large show an odds ratio that is less 

than 2 for the accuracy of tagging frequent words 

vs. tagging unseen words. We could not say that 

model CoRoLa BERT exhibits the same behavior 

due to its insufficient pre-training for its large 

vocabulary. 

The model RoBERT-base shows a different 

behavior with respect to accuracy odds ratio vs. test 

word frequency: while the odds ratio of POS 

tagging accuracy is below 2 when comparing rare 

words (F ≤ 3) to unseen words (F = 0), as in the 

case of the other two sibling models, when the 

frequency increases (e.g. F ≥ 10), the odds ratio 

settles at a bit over 3 (twice as much when 

compared to the other two models). While it is 

expected that the POS tagging accuracy increases 

with the test word frequency (in the train set), as 

more contexts of those words were seen during 

training, RoBERT-base does much better than the 
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other two sibling models when test words were 

seen during training. This hypothesis is supported 

by the top POS tagging accuracy of RoBERT-base 

compared to any other tested model (see Tables 4 

and 5). One possible explanation for this situation 

is that RoBERT-base has the best number of 

parameters (not too few, nor too many) for our POS 

tagging task and this enables its accuracy odds ratio 

curve to increase more sharply than siblings’ 

curves, but not that sharply as the odds ratio curve 

of CoRoLa BERT which indicates more of an 

overfit of the training data than a good 

performance. 
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