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Abstract
Currently, there is a lack of a straightfor-
ward implementation of diarization-augmented
speech transcription (DAST), ie. implemen-
tation of transcription, diarization and align-
ment to the audio within one model. These
tasks typically require distinct models, neces-
sitating to stack them together for complete
processing. In this study, we advocate for lever-
aging the advanced capabilities of the Whis-
per models, which already excels in automatic
transcription and partial alignment. Our ap-
proach involves fine-tuning the model’s param-
eters on both transcription and diarization tasks
in a SOT-FIFO (Serialized Output Training-
First In First Out) manner. This comprehen-
sive framework facilitates the creation of ortho-
graphic transcriptions, identification of speak-
ers, and precise alignment, thus enhancing
the efficiency of audio processing workflows.
While our work represents an initial step to-
wards a unified transcription and diarization
framework, the development of such a model
demands substantial high-quality data augmen-
tation and computational resources beyond our
current scope. Consequently, our focus is nar-
rowed to the English language. Despite these
limitations, our method demonstrates promis-
ing performance in both transcription and di-
arization tasks. Comparative analysis between
pre-trained models and fine-tuned TAD (Tran-
scription, Alignment, Diarization) versions sug-
gests that incorporating diarization into a Whis-
per model doesn’t compromise transcription
accuracy. Our findings hint that deploying our
TAD framework on the largest Whisper model
could potentially yield state-of-the-art perfor-
mance across all mentioned tasks.

Keywords: Diarization, automatic speech
recognition, Whisper

1 Introduction

Speaker diarization (SD) endeavors to ascertain
”who spoke when” (Tranter and Reynolds, 2006).

Various methodologies have been employed to
annotate audio data for the purpose of identifying
speakers within it. Conventionally, this task was
compartmentalized into distinct sub-modules (Park
et al., 2022), ranging from voice activity detection
(VAD) to clustering speech segments and assigning
speaker labels. However, the optimization of each
module in isolation restricted overall optimization.
With the advent of deep learning techniques, neural
networks have been leveraged to improve the
performance of these sub-modules by extracting
speaker embedding (Variani et al., 2014; Heigold
et al., 2016), thereby rendering models easier to
train, more resilient to speaker variability, and
robust under varying acoustic conditions (Zhang
et al., 2019). A recent breakthrough is the adoption
of fully end-to-end Neural Diarization (EEND;
Fujita et al. (2019a,b)), wherein all sub-modules
are replaced by a single neural network. This
promising approach enables the joint optimization
of model components, potentially enabling the
handling of multi-speaker audio and overlapping
speech. Initially implemented using bi-directional
long short-term memory architectures (Fujita
et al., 2019a), these models swiftly transitioned to
self-attention-based networks (Fujita et al., 2019b).
Nevertheless, challenges persist, including the
model’s limited capacity to handle a large number
of speakers, the difficulty in achieving online
processing, and the tendency for models to overfit
the training data distribution (Park et al., 2022).

Recent advancements have demonstrated that
the concurrent modeling of SD and automatic
speech recognition (ASR) can enhance the per-
formance of both tasks, as exemplified in various
models (Silovsky et al., 2012; Huang et al., 2007).
This integration allows SD to use both acoustic
and linguistic information, resulting in superior
performance compared to models relying solely
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on acoustic information. Furthermore, it enables
not only to determine ”who spoke when” but also
discerning ”what” was spoken. As discussed in
Park et al. (2022), various approaches have been
explored, including the introduction of speaker
tag roles in transcripts (Shafey et al., 2019),
MAP-based joint decoding frameworks (Kanda
et al., 2019), and the emergence of End-to-End
Speaker Attribution ASR (E2E SA-ASR, Kanda
et al. (2020a)), which facilitates speaker counting,
multi-talker ASR, and speaker identity determina-
tion without limitations on the number of speakers.

Our aim in this research is to unify the diariza-
tion and transcription task in one model. We
achieved this by fine-tuning existing Whisper mod-
els, (Radford et al., 2023), which already transcribe
speech with state of the art performance and align
the transcription to the audio. Our fine-tuning en-
ables the recognition of distinct speakers within the
speech audio. By focusing on fine-tuning rather
than extensive pre-training, we achieve transfer-
able results even with limited data, making our
model applicable to languages with minimal avail-
able resources. Thus, we introduce Whisper-TAD
(Transcribe, Align, Diarize), an initial version of a
versatile model that streamlines the DAST pipeline.

Our article is structured as follows; in section
2 we present our methodology, then in section 3
our experimental setup, in section 4 our experimen-
tal results and we finally discuss possible further
works in section 5.

2 Methodology

2.1 Foundation model

As a foundation model we use Whisper (Radford
et al., 2023). Whisper models already reach state of
the art performance in orthographic transcription
task. As highlighted by the authors, these models
were designed in a multi-task format, also solving:
translation, VAD, partial alignment, and language
identification tasks. Although diarization was cited
as a desirable task to solve in an ASR pipeline, the
authors didn’t address this in their original publi-
cation. In order to add this ability to the Whisper
models, we add special tokens to the tokenizer as
well as new randomly initialized embeddings for
these new tokens. The new tokens are up to five
speaker tokens as well as a noSpk token for VAD.
We then fine-tune the models on both ASR and
diarization tasks jointly.

2.2 Fine-tuning task

For the fine tuning, we used the SOT FIFO frame-
work. SOT (Serialized Output Training) as been
first introduced in Kanda et al. (2020b). It allows
to train an attention-based neural network on both
transcription and diarization using only one output.
It is usable on data that contains multiple speakers
and overlapping speech. When there is multiple
speakers to classify, there are different ways to out-
put the result of the deep neural network in one
output. We choose FIFO (First In First Out) as
it is the most used variant of SOT. In the FIFO
approach, a distinct speaker ID is incrementally as-
signed to each newly detected speaker in the audio.
For instance, the initial speaker detected is labeled
as ”spk1,” the subsequent one as ”spk2,” and so
forth. Consequently, there is no correspondence
between the speaker IDs assigned to two different
segments of audio, even if they contain the same
speaker or speakers. For this reason our framework
is a local E2E DAST model. We have not yet im-
plemented a clustering of the speakers to recognize
when speakers in different chunks of a same audio
have the same identity.

One of the limitation of the SOT method that
we use is that we cannot classify more than five
speakers in one chunk of thirty seconds. However,
the cases in which more than five speakers talk in
one 30s chunk are pretty rare. It would therefore
require a large amount of data augmentation to
achieve decent accuracy on more than 5 speakers.

Figure 1 illustrates The SOT FIFO framework
where all necessary tokens for each 30-second seg-
ment of audio (chunk) are generated by the auto-
regressive decoder. For every utterance of an audio
chunk, the model initiates by outputting a speaker
token (depicted in blue) alongside a timestamp to-
ken (depicted in green) to mark the beginning of
the utterance. Following this, tokens outputted
by the Whisper byte-pair encoding tokenizer (de-
picted in orange) are employed to transcribe the
utterance. Once transcription is complete, a final
timestamp token is appended to signify the end of
the speaker’s utterance. Furthermore, if the same
speaker contributes multiple times within a single
chunk, they are assigned a consistent speaker ID
(ranging from 1 to 5).
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Figure 1: WHISPER-TAD framework

3 Experimental setup

3.1 Data
This study makes use of the AMI (Kraaij et al.,
2005) and ISCI (Janin et al., 2003) benchmark
datasets for our experiments.

The ISCI corpus regroups 75 meetings, with 4
different types of meetings with up to 10 partici-
pants, and the AMI corpus comprises 100 hours
of audio from 171 meetings coming from multi-
ple sites in which 3 to 5 participants are present.
Both datasets provide the meetings transcriptions,
word level alignment, and speaker labels. These
datasets are suitable for the fine-tuning task as we
plan on evaluating the performance of SD along
with an ASR module. As we didn’t found clear
guidelines to split the ICSI corpus we used the full
ISCI for training and validation of our model, not
for testing. For the AMI corpus guidelines diverges
(Landini et al., 2022). We decided to split it in
train, validation and test sets as described by the
official suggestions on the website of the corpus1

as it seems to be a reliable, efficient split of the
data.

Note that a few hours of audio from the AMI
and ICSI corpus contains audio speech without
transcription which increase the probability of hal-
lucination at inference if the model was trained on
these data. For ISCI corpus, these parts without

1https://groups.inf.ed.ac.uk/ami/corpus/datasets.shtml

AMI ICSI Total

Training 78 58 136
Validation 10 12 22
Test 9 0 9

Table 1: Share of the AMI and ICSI corpus in the train-
ing - validation - test sets. Shares are given in hours of
audio.

transcription are parts where the speakers are ask
to pronounce random numbers all together. These
parts where removed from the training - validation
- test datasets.

3.2 Hyper-parameters

Due to limited computational power for this ex-
periment, we only fine-tuned the base, small and
medium Whisper models, but could not fine-tune
the larger versions. We used a 0.05 dropout with a
learning rate of 1e−5 and a batch size of 100. The
optimizer used is Adam. We had access to one (24
GB ram) RTX 6000 GPU.

3.3 Metrics

Our models are trained on three distinct tasks, each
requiring specific metrics for evaluation.

For the speaker diarization task, we chose the
Diarization Error Rate (DER), which quantifies the
accuracy of speaker diarization systems by measur-
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ing the alignment between the predicted speaker
segments and the ground truth. DER accounts for
missed speakers, false alarms, and speaker mis-
alignment. Specifically, we utilized its Python
implementation from pyannote (Bredin et al.,
2020). We do not use collar, as recommanded by
pyannote guidelines.

For the transcription task, we employed the
Concatenated minimum-Permutation Word Error
Rate (cpWER) (Watanabe et al., 2020). Unlike tra-
ditional Word Error Rate (WER), cpWER gathers
all the speech productions from a same speaker and
calculate the WER per speaker. This is particu-
larly useful in scenarios where the speech stream
is segmented in a ”Diarization-style” manner, i.e.,
segmented by speaker.

Additionally, we employed traditional WER to
compare the performance of the pre-trained mod-
els with those fine-tuned on both transcription and
diarization. This comparison allows us to assess
whether multitasking improves or hampers the per-
formance of the models on their primary task.

For the Voice Activity Detection (VAD), we uti-
lized the Equal Error Rate (EER) metric. EER rep-
resents the point where the false acceptance rate (ie.
falsely classifying non-speech as speech) equals the
false rejection rate (ie. falsely classifying speech as
non speech), providing a balanced measure of VAD
performance across different operating conditions.

4 Experimental Results

The results of our fine-tuning task on the different
Whisper models are illustrated in Table 2. As to
be expected, the larger the model, the better the
metrics. Another notable observation is that the
performance difference between the Base and the
Small models is more significant than the one be-
tween the Small and the Medium. One explanation
for this phenomenon is the lack of data, and the fact
that we didn’t do any data augmentation to mitigate
this.

DER EER cpWER

Base 0.498 0.655 0.548
Small 0.202 0.120 0.345
Medium 0.189 0.151 0.313

Table 2: Results of the fine-tuning task on the Base,
Small and Medium Whisper models

As explained in 3.3, we also calculated the stan-

Base Small Medium

PT TAD PT TAD PT TAD

0.621 0.346 0.466 0.279 0.403 0.269

Table 3: WER comparison for three different sizes of the
Whisper model. The models labeled as PT denote the
pre-trained models, while those labeled as TAD indicate
models fine-tuned for diarization

dard WER in order to demonstrate that even while
adding the diarisation task, the performance of the
models on the initial task they have been trained on
does not decrease, but even increases as depicted
by Table 3, showing that the fine-tuning on another
task is also useful for the initial task, and a joint
pipeline can only increases the performance for
both tasks.

5 Further work

This study serves as a proof of concept, with fur-
ther investigations required to fully evaluate the
methodology’s feasibility.

Firstly, a crucial step is transitioning from local
E2E processing to global E2E processing. This
entails enabling the model to consistently assign
the same speaker ID to speakers across different au-
dio chunks, rather than assigning new speaker IDs
for each chunk as done in prior research by Cor-
nell et al. (2024) using Wav2Vec (Schneider et al.,
2019). Various approaches can be explored, such as
incorporating a classification head by clustering all
speakers across the entire audio, thus necessitating
an additional output head for the model.

Secondly, larger versions of Whisper need to be
fine-tuned to ascertain the maximum performance
achievable using this methodology.

Thirdly, in order to train larger models for the di-
arization task, data augmentation is indispensable.
Leveraging datasets like LibriSpeech (Panayotov
et al., 2015) for data augmentation can enhance the
training process. Additionally, data augmentation
can facilitate the fine-tuning of these models for di-
arization tasks in languages with limited accessible
resources.

6 Conclusion

This study introduces Whisper-TAD, a preliminary
investigation into a versatile model designed to in-
tegrate transcription, sentence-level alignment, and
diarization tasks within a unified pipeline. Employ-
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ing a SOT FIFO method, special tokens are incor-
porated for speaker identification, enabling recog-
nition of up to 5 speakers per 30-seconds audio
chunk. Our experiments conducted on the ISCI and
AMI corpora yield promising outcomes, suggest-
ing potential applicability across languages with
limited resources. Notably, our approach achieves
competitive performance, even in the absence of
data augmentation and without the exploration of
larger models. These findings underscore the ro-
bustness and effectiveness of Whisper-TAD, offer-
ing valuable insights for future research directions
in multi-task audio processing.
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