
Generating Phonetic Embeddings for Bulgarian Words with Neural
Networks

Lyuboslav Karev
Faculty of Mathematics and Informatics
Sofia University, ”St. Klimenth Ohridski”

lkarev@uni-sofia.bg

Ivan Koychev
Faculty of Mathematics and Informatics
Sofia University, ”St. Klimenth Ohridski”

koychev@fmi.uni-sofia.bg

Abstract
Word embeddings can be considered the cor-
nerstone of modern natural language process-
ing. They are used in many NLP tasks and
allow us to create models that can understand
the meaning of words. Most word embeddings
model the semantics of the words. In this pa-
per, we create phoneme-based word embed-
dings, which model how a word sounds. This
is accomplished by training a neural network
that can automatically generate transcriptions
of Bulgarian words. We used the Jaccard in-
dex and direct comparison metrics to measure
the performance of neural networks. The mod-
els perform nearly perfectly with the task of
generating transcriptions. The model’s word
embeddings offer versatility across various ap-
plications, with its application in automatic
paronym detection being particularly notable,
as well as the task of detecting the language
of origin of a Bulgarian word. The perfor-
mance of this paronym detection is measured
with the standard classifier metrics - accuracy,
precision, recall, and F1.
Keywords: neural networks, word embed-
dings, transcriptions, phonemes, grapheme-to-
phoneme

1 Introduction

In natural language processing, automatically gen-
erating transcriptions of words is a formidable
challenge, particularly when confronted with lan-
guages like Bulgarian. Renowned for its near-
perfect phonemic orthography, wherein each let-
ter typically corresponds to a single sound, Bulgar-
ian presents an intriguing paradox. While its or-
thographic structure promises clarity, exceptions
within the system thwart the straightforward ap-
plication of bijective mapping algorithms. These
anomalies underscore the need for innovative ap-
proaches that seamlessly reconcile orthographic
and phonetic representations.
In this work, we create a neural network that gen-

erates a phoneme transcription from a word. The

model is trained on five books, transforming each
into a pair of words and transcriptions.
One particularly noteworthy application of our

model lies in automatic paronym detection. By
seamlessly integrating phonetic representations
into the detection process, our model demonstrates
good results for paronym detection.
Another application of phoneme embeddings is

the detection of loanwords in the Bulgarian lan-
guage. A classifier is trained using the embeddings
as input, which classifies the language of origin of
a given word.

1.1 Main concepts
We will define a few concepts that will be used
throughout the paper.

• Phoneme: The smallest sound unit in a lan-
guage that can differentiate words.

• Transcription: The process of representing
spoken language in written form.

• Grapheme: The smallest unit of a writing sys-
tem that represents a phoneme in the spelling
of a word.

• Syllable: In the Bulgarian language, a sylla-
ble is a collection of sounds containing ex-
actly one vowel.

• International Phonetic Alphabet: Standard-
ized phonetic notation system representing
spoken language sounds.

1.2 Rules for generating phonetic
transcriptions

In the Bulgarian language, generating the phonetic
transcription for a word is almost straightforward.
We need to know the word and which syllables
are stressed to get the transcription. We can check
if the letter is a consonant or a vowel by going
through each letter. We can replace the letter

71

with the matching phoneme if the letter is a con-
sonant. If the letter is a vowel, we have to check
if the vowel is stressed and then pick the correct
phoneme based on that.
The result is a string written in the Interna-

tional Phonetic Alphabet (IPA). As an example, the
Bulgarian word ”здравей” (meaning ”hello”) will
look something like this: ”zdr2vEj”

1.3 Syllabic transposition rules

In the Bulgarian language, the structure of a sylla-
ble depends on the amount and placement of con-
sonants around a vowel. From this, we can dis-
tinguish four types of syllables Весела Кръстева
(2009):

• Syllables that have only a single vowel.

• Syllables that have one or more consonants
followed by a vowel.

• Syllables that have a vowel followed by one
or more consonants.

• Syllables that have one or more consonants,
followed by a vowel, followed by one ormore
consonants.

This structure is not enough to split a word into
syllables. To solve this problem, we can use the
hyphenation rules in the Bulgarian language, de-
scribed below. БАН (2011)

1. The consonant letter, which is between two
vowels, is hyphenated on the next line.

2. Two ormore consecutive consonant letters be-
tween two vowels are hyphenated such that at
least one consonant is after the first vowel and
at least one before the second vowel.

(a) Two repeated consonants are split
equally on the first and second part of
the hyphenation.

3. Two consecutive vowels are hyphenated such
that one is on the first line while the second is
on the second line.

A word can automatically be split into syllables
with this set of rules.

2 Related work

Generating the phoneme transcriptions from the
grapheme representation is not new, and multiple
approaches have been proposed.

Black and Lenzo (2003) and Elovitz et al.
(1976) both describe a rule-based approach where
graphemes are directly replaced with their cor-
responding phonemes. On an English language
dataset, Elovitz et al. (1976)’s approach achieves
around 80% of correctly generated transcriptions,
while Black and Lenzo (2003)’s approach results
in around 70% of correctly generated transcrip-
tions.

A statistical model is described in Bisani and
Ney (2008), which relies on modeling the trans-
lation process as a linear sequence of operations.
The model generates a phonemic transcription
from the orthographic form of a word. This is
achieved by approximating the sum of the joint
probabilities of all possible graphone sequences
that match the given spelling.

Rao et al. (2015) describes an LSTM-based
model for performing grapheme-to-phoneme con-
version with a 25.8% error rate on a standard En-
glish dataset.

Li et al. (2022) describes multiple approaches
that work on a single language - a joint n-gram
model, a sequence-to-sequence LSTM model, and
a transformer model. The models handle unknown
languages by finding the closest language based on
the language family tree and using the nearest k
language models. The downside of this approach
would be that if a model is not trained on Bulgarian
data, it might not yield sufficient results.

Yolchuyeva et al. (2019) and Engelhart et al.
(2021) propose using transformer-based models
to automatically generate the transcriptions from
words and apply the model to different tasks for
the English language.

In this paper, a similar transformer-based net-
work to Yolchuyeva et al. (2019) and Engelhart
et al. (2021) will be used, with the main difference
being that the network will be trained exclusively
on Bulgarian words and transcriptions to solve the
task of automatic transcription generation for the
Bulgarian language.

Proceedings of CLIB 2024

72

3 Data gathering, analysis, and
transformation

3.1 Data gathering
The initial data set was collected from the website
https://chitanka.info/. Five books, each in a sepa-
rate text file, were downloaded from this website.
Thewebsite of ”Chitanka” also provides an SQL

database containing information about the stressed
syllables in a word. All words and their stressed
syllables are downloaded from the database. A
small transformation was applied to the words.
The stressed syllables are marked with the ‘ sym-
bol. For this to be understood by the model, We re-
placed the ‘ symbol with the index of the stressed
vowel. For example, the word ”авиобранш” has
two stressed vowels - the two ’а’s. The entry in the
database for that word would be ”а‘виобра‘нш”.
After the transformation, the indices of the stressed
syllables would be at indices 0 and 6.

3.2 Transformation of the data
For each of the books, the following transforma-
tion is applied:

1. Read all lines of the book.

2. Split each line into separate sentences.

3. For each sentence, remove any special format-
ting from the website.

4. Split each sentence into words.

5. For each word, generate its transcription.

6. Each word, along with its transcription, is
written in a file.

This transformation of the five books results in
a list of 606,102 pairs of words and transcriptions.

3.3 Analysis of the data
A short analysis of the data shows us that the
amount of unique words is 39,405. The ten most
common words are listed under Table 1
From this, we can see that the most common

words are the conjunctions ”на”, ”да”, ”и”, ”се”,
etc.
A word is seen 15.381 times on average in the

dataset, making the dataset imbalanced in terms of
words. However, it’s vital to note that natural lan-
guage is also imbalanced, so this dataset reflects
real-life usages of the words. The average length

Word Count % count
на 20369 3.36%
да 20311 3.35%
и 20048 3.31%
се 16139 2.66%
в 10114 1.67%
от 9666 1.59%
не 8151 1.34%
си 7617 1.26%
с 7160 1.18%
че 6724 1.11%

Table 1: 10 most common words

Figure 1: Word length count

of a word is 4.673 characters. The distribution of
the lengths of the words can be seen in Figure 1.
Regarding the syllables, the dataset contains a

total of 1,222,793 syllables. The unique syllables
are 5,469. The 10 most common syllables are
listed under Table 2. The average length of a syl-
lable is 2.31 characters. The distribution of the
lengths of the syllables can be seen in Figure 2.
There, we can see that the 2-character syllables are
the most common, with 61.482%, followed by 3-
character syllables, with 23.695%.

3.4 Data segmentation

The dataset is split into three subsets: one for train-
ing, one for validation, and one for testing. The
subsets are split in the following way:

• Training set - 80% of the data (484,881 pairs)

• Validation set - 10% of the data (60,610 pairs)

• Testing set - 10% of the data (60,611 pairs)

Proceedings of CLIB 2024

73

Syllable Count % count
на 53107 8.76%
то 34352 5.67%
та 32000 5.28%
и 30720 5.07%
да 28596 4.72%
ни 23501 3.88%
те 22548 3.72%
ка 22094 3.65%
се 21358 3.52%
е 20169 3.33%

Table 2: 10 most common syllables

Figure 2: Syllable length count

4 Model overview and training

4.1 Transformer model
The idea is to train a neural model based on the
Transformer architecture Vaswani et al. (2023).
We introduce the following notation:

• s - syllable.

• W = s+ - word, containing at least one sylla-
ble.

• sW - word W, split into its syllables.

• lW - the amount of syllables in the wordW .

• ts - the transcription of the syllable s.

• tW - the transcription of the wordW .

• f(s) : s 7→ N - function, which maps a sylla-
ble to an index.

• f ′(s) : N 7→ ts - function, which maps an
index to a transcription of a syllable.

• is - the index of the syllable s, f(s) = is.

• iW - the indices of the syllables from the word
W .

• its - the index of the transcription of the sylla-
ble ts.

• itW - the indices of the transcription of the
wordW .

• viW - the input vector of the model.

• oiW - the output vector of the model.

• Embedding - a vector representation of a
word, or in this case, a syllable.

• emb - the size of the resulting embeddings
from the model.

• <bos> - tag for the start of a word.

• <eos> - tag for the end of a word.

The neural model accepts a vector viW with size
lW and returns a new vector oiW with size lW .
Before each word W can be sent to the model,

it must be transformed. This transformation is de-
scribed in Section 4.2
The model contains an embedding layer, an en-

coder layer, a decoder layer, and a linear layer. The

Proceedings of CLIB 2024

74

input vector is transformed into an input embed-
ding augmented with positional encodings, which
provide information about the order of the sylla-
bles in a word. From there, the positional encoded
input is passed to the encoder and decoder parts of
the Transformer model. The encoder encodes the
input into a series of hidden representations, which
pass through the layers of the encoder. The en-
coder outputs a series of embeddings, which are
then fed to the decoder, which generates the tran-
scription of the word. The final part of the model
is a linear layer, which transforms the output of the
transformer model into unnormalized probabilities
for each transcription token.

4.2 Transforming a wordW

The transformations applied over a given word w
so that it can be used as input for the model are as
follows:
The word W is split into its syllables sW . For

each syllable s, f(s) is applied, resulting in a vec-
tor of indices of the syllables ofW , iW . At the start
and end of this vector, the unique tags <bos> and
<eos> are added. As a result, the vector viW is
created and can be used by the model.
The model’s output is a vector oiW , which has a

size of lW . It contains the special symbols <bos>
and <eos>. After their removal, the vector itW
is left. We apply f ′ for every index its , to get the
transcription ts for the syllable s. Once we have
all the syllables, we get the transcription tW of the
wordW .

4.3 Training of the model
For training the module, the samples are passed in
batches of 128.
The parameters of the model chosen during

training are the following:

• Amount of Encoder layers: 3

• Amount of Decoder layers: 3

• Embedding size (E): 512

The loss function used for training is the Cross
entropy loss function. It is usedwhen trainingmod-
els that solve multi-class classification problems.
With this function, we can quantify how well the
model performs. It evaluates the output vector of
the model against the expected result vector and re-
turns a scalar. The lower the number, the better the
model performs.

The training is done for 25 epochs. Figure 3
shows the loss value change across each training
epoch.

Figure 3: Results of the loss function on the train and
validation datasets across the epochs

On the 25th epoch, the value of the loss func-
tion is as follows: Train set - 0.011, validation set
- 0.024.

5 Usage of the phonetic embeddings

In this section, we will use the following notation:

• EW - the resulting vector from the encoder
layer of the model. Size: (lW , emb)

• wts(W) - the function that transforms the
wordW to the valid input for the model. This
function is described in Section 4.2.

The embeddings result from using only the en-
coder part of the model. The user enters a word
W , which is transformed (4.1) into the input vec-
tor for the model viW . From there, the vector is
passed to the encoder part of the model, which re-
turns the vectorEW . As the model works on sylla-
bles, the returned embedding is not a single vector,
but lW vectors, each of size emb (which in this case
is 512), containing floating-point numbers.

6 Experiments

Apart from the notation used in Section 4.1, we
will introduce the following symbols:

• tpW - the transcription of the word w, which
results from the model working on the word
W .

• taW - the transcription of the word W , taken
from the dataset.

Proceedings of CLIB 2024

75

6.1 Result over random words
The model is run over a random set of Bulgarian
words. The results of this experiment can be seen
in Table 3.

word generated trasctiption
здравей zdr2vEj
благодаря bl2god2rj5

лято lj5to
зима zim2
книга knig2
кафе k2fE
синьо sinjo

часовник tS2j5j5snik
градина gr2din2
слънце sl5ntsE
месец mEsEts
живот Zivot
река rEk2

музика mozik2
храна xr2n2

Table 3: Results on a random set of Bulgarian words

As we can see, most of the words are correct.
One of the examples that is wrong is the word
”часовник”, the transcription of which is gener-
ated as tS2j5j5snik. Converting this transcription
back to a written form would result in the word
”чаяясник”, which is incorrect.

6.2 Jaccard index
The Jaccard index is the first objective metric to
evaluate the model’s performance. This metric
evaluates the similarity between two sets and is de-
fined over sets and multisets.
Let’s define the function J(A,B), which mea-

sures the Jaccard index over two sets.
For two sets, A and B, J(A,B) is defined as

follows:
J(A,B) = |A∩B|

|A∪B| =
|A∩B|

|A|+|B|+|A∩B| .
As the transcription tW of the word W can be

considered an ordered multiset containing the tran-
scriptions ts of the syllables s, we can use the Jac-
card index as an evaluation metric. This metric
can evaluate what percentage of the generated syl-
lables are correct (ignoring their ordering). As the
transcription of a single syllable can appear multi-
ple times in the transcription of the word, we must
modify the Jaccard index to support multisets.
We can define a function Jm(A,B), where A

and B are multisets, in the following way:

Jm(A,B) = |A∩B|
|A|+|B| . It’s important to mention

that Jm(A,B) returns values in the [0; 1/2] range.
To normalize this interval, the result is multiplied
by 2.
We can now define the metric Jaccard index for

two transcriptions taW and tpW in the followingway:
Jt(t

a
W , tpW) = 2 ∗ (|taW∩tpW |

|taW |+|tpW |)

Evaluating the test set with the Jaccard index
metric yields a result of 99.571% match

6.3 Direct comparison
The Jaccard index only evaluates whether the gen-
erated transcriptions of the syllables are correct, ig-
noring their ordering. Another metric must be de-
fined to get a metric that includes the ordering. A
good candidate is the direct comparison of the two
transcriptions.
We can define a function that compares the syl-

lables of two transcriptions taW and tpW pairwise.

c(taW , tpW) =

1

If |taW | = |tpW |
and for ∀i ∈ 0..|taW |

the following is true: taW i = tpW i

0 otherwise

We are evaluating the test set with the direct com-
parison metric, which yields a result of 99.285%
match.
Comparing this result to the Jaccard index met-

ric, we can see that 0.286% of the generated tran-
scriptions have all the correct syllables but in a dif-
ferent order than in the correct transcription.

7 Paronyms detection

7.1 Introduction
In the Bulgarian language, two words are
paronyms if they are close in sound but different
in meaning. As an example, the words ”статист”
и ”статистик” sound close (in this case, they share
syllables) but have vastly different meanings.
We hypothesize that the embeddings from the

model described above can be used to detect if
two words are paronyms. This can be done by
classifying two words based on their ”phonemic
distance”—the distance that would model how the
words sound.
The metric used to calculate this ”phonemic dis-

tance” is the Cosine similarity metric. This metric
gives us the level of similarity between two vectors.
It’s defined the following way:

Proceedings of CLIB 2024

76

SC(A,B) =
∑n

i=1 AiBi√∑n
i=1 Ai

2
√∑n

i=1 Bi
2
. The cosine

similarity returns values in the [−1; 1] range. A
value of -1 means the vectors are opposite, while
one means the vectors are proportional.
Based on this, we can define cosine similarity

between two embeddings.
Let E1 and E2 be the embeddings of the words

W1 and W2. Let lW1 and lW2 be the amount of
syllables in the two words and l = min(lW1 , lW2)
Then:

SE(E1, E2) =
∑l

i=0 SC(E1i,E2i)
l

SE again belongs to the [−1; 1] range. Result
−1 will be interpreted as the words don’t sound
alike, while 1 will mean that the words do sound
alike.

7.2 Experiments and results
From Върбанова and Весела Кръстева (2009) 92
pairs of paronym words were collected. Ninety-
three pairs of non-paronym words were added, re-
sulting in a dataset of 185 pairs. This dataset was
split into train and test sets in an 80:20 ratio—148
pairs for training and 37 for testing.
A logistic regression classifier is used to deter-

mine whether twowords are paronyms. Themodel
uses the cosine similarity between the embeddings
of the two input words as input.
The following notation and metrics are used to

evaluate the model: accuracy, precision, recall,
and F1 score.
As a comparison, we used the word embeddings

from the fastText library Bojanowski et al. (2016),
Joulin et al. (2016) to train the same classifier on
the same dataset. The results are shown in Table
??

Metric Score
Phonetic fastText

accuracy 0.892 0.892
precision 0.850 0.938
recall 0.944 0.833
F1 0.895 0.882

Table 4: Results over the paronyms dataset comparing
phonetic embeddings with fastText word embeddings

As we can see, our phonetic embeddings show
the same accuracy as the fastText ones. fast-
Text performs better on the precision metric, how-
ever loses a bit in the recall. Comparing the F1
scores shows that our phonetic embeddings per-
form around the same as the fastText embeddings.

8 Language of origin detection for
Bulgarian words

8.1 Introduction
As the phoneme embeddings mentioned in Sec-
tion 5 model the way a word sounds, we propose
that the embeddings can be used to detect the lan-
guage of origin of a Bulgarian word. We assume
that loanwords in Bulgarian will sound differently
than regular Bulgarian words. As part of this sec-
tion, an RNN-based classifier is trained using data
from loanword dictionaries. The dataset consists
of pairs of words and their language of origin. Ta-
ble 5 shows the amount of loanwords in the dataset.
From there, three datasets are created, with differ-
ent amounts of Bulgarian words - with 5 000 Bul-
garian words, with 13 395 Bulgarian words, and
with 30 875 Bulgarian words. Each model accepts
Bulgarian words as input, gets its phoneme embed-
ding, and returns the probability of the word be-
longing to a certain language.

Language Word count % of total
Latin 1504 29.10%
Greek 984 19.04%
French 958 18.51%
Turkish 658 12.73%
English 478 9.25%
German 240 4.64%
Italian 156 3.02%
Russian 102 1.97%
Spanish 33 0.64%
Dutch 29 0.59%
Hebrew 11 0.21%
Arabic 7 0.14%
Serbian 4 0.08%
Persian 3 0.06%

Table 5: Words from a given language

From there, three models are trained, depend-
ing on the number of Bulgarian words used - we’ll
call these models Phoneme-5k, Phoneme-13k and
Phoneme-30k.

8.2 Experiments and results
The standard metrics—accuracy, precision, recall,
and F1—are used to evaluate the classifiers. For
comparison, a classifier using the fastText word
embeddings was trained on the same datasets. The
fastText-based classifiers will be referred to as
fastText-5k, fastText-13k and fastText-30k.

Proceedings of CLIB 2024

77

Model Metric
Accuracy Precision Recall F1

Phoneme-5k 0.590 0.553 0.590 0.565
Phoneme-13k 0.736 0.727 0.736 0.730
Phoneme-30k 0.806 0.807 0.806 0.806
fastText-5k 0.672 0.697 0.672 0.653
fastText-13k 0.794 0.797 0.794 0.789
fastText-30k 0.868 0.864 0.868 0.861

Table 6: Comparsion between our phoneme embeddings and fastText embeddings for the language of origin task

The results from Table 6 show that the fastText
embeddings perform a bit better than the phoneme
embeddings, although it’s not a sizeable differ-
ence.

9 Limitations

While the results of the model are looking good,
there are some limitations on it. The input of the
model does not include information about the em-
phasis of the word. This information is only used
to generate the proper transcription for the training
data. This impacts the phonemes generated by the
model.
The phonetic embeddings also don’t seem to ex-

hibit any of the properties present in other word
embeddings. Embeddings like word2vec Mikolov
et al. (2013) represent the semantic and syntactic
relationships between the words. For example, the
distance between the words ”man” and ”woman”
is similar to the distance between the words ”king”
and ”queen”. The phonetic embeddings however
don’t exhibit such connections. For example, if
we have two words, which differ only at the suf-
fix, the distance between their embeddings varies
from small to a large, and is not consistent through
different pairs of words.

10 Conclusion

A dataset containing 600,000+ words and their
transcription was created. A transformer-based
model was created to solve the Bulgarian lan-
guage’s grapheme-to-phoneme task. The model
performs with very high accuracy. Embeddings
extracted from this model were used in a simple
classifier that checks if two words are paronyms.
The classifier performs also with a high accuracy
percentage.
As a result, there is now an automatic system

for paronym detection and automatic generation
of phonemic transcriptions of Bulgarian words.

These approaches can be applied to other lan-
guages that are different from Bulgarian. In future
research, we intend to use the embeddings to detect
if a word is a loanword.

11 Acknowledgments

The work is partially financed by the European
Union-NextGenerationEU, through the National
Recovery and Resilience Plan of the Republic of
Bulgaria, project No BG-RRP-2.004-0008.

References
Maximilian Bisani and Hermann Ney. 2008. Joint-

sequence models for grapheme-to-phoneme conver-
sion. Speech Commun., 50:434–451.

Alan Black and Kevin Lenzo. 2003. Issues in building
general letter to sound rules.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

H. S. Elovitz, RodneyW. Johnson, AstridMcHugh, and
John E. Shore. 1976. Automatic translation of en-
glish text to phonetics by means of letter-to-sound
rules (nrl report 794.

Eric Engelhart, Mahsa Elyasi, and Gaurav Bharaj. 2021.
Grapheme-to-phoneme transformer model for trans-
fer learning dialects.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016. Fasttext.zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

Xinjian Li, Florian Metze, David Mortensen, Shinji
Watanabe, and Alan Black. 2022. Zero-shot learning
for grapheme to phoneme conversion with language
ensemble. In Findings of the Association for Com-
putational Linguistics: ACL 2022, pages 2106–2115,
Dublin, Ireland. Association for Computational Lin-
guistics.

Proceedings of CLIB 2024

78

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word
Representations in Vector Space.

Kanishka Rao, Fuchun Peng, Haşim Sak, and Françoise
Beaufays. 2015. Grapheme-to-phoneme conversion
using Long Short-Term Memory recurrent neural
networks | IEEE Conference Publication | IEEE
Xplore.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2023. Attention Is All
You Need.

Sevinj Yolchuyeva, Géza Németh, and Bálint Gyires-
Tóth. 2019. Transformer based grapheme-to-
phoneme conversion. In Interspeech 2019, pages
2095–2099.

Институт за български език при БАН. 2011. Пра-
вопис и пунктуация на българския език. [Institut
za balgarski ezik. Pravopis i punktuatsiya na
balgarskiya ezik. Prosveta, 2011.].

Павлина Върбанова. 2021. Списък на пароними.
Как се пише. [Pavlina Varbanova. Spisak na
paronimi. Kak se pishe.].

Весела Кръстева. 2009. Практическа граматика на
съвременния български език. Кръгозор. [Vesela
Krasteva. Prakticheska gramatika na savremenniya
balgarski ezik. Kragozor, 2009.].

Proceedings of CLIB 2024

79

