

Abstract

This paper delves into the implementation of

a Biaffine Attention Model, a sophisticated

neural network architecture employed for

dependency parsing tasks. Proposed by Dozat

and Manning, this model is applied to

Bulgarian language processing. The model's

training and evaluation are conducted using

the Bulgarian Universal Dependencies

dataset. The paper offers a comprehensive

explanation of the model's architecture and

the data preparation process, aiming to

demonstrate that for highly inflected

languages, the inclusion of two additional

input layers - lemmas and language-specific

morphological information - is beneficial. The

results of the experiments are subsequently

presented and discussed. The paper concludes

with a reflection on the model's performance

and suggestions for potential future work.

Keywords: syntactic parsing, Universal

Dependencies, Biaffine Attention, Bulgarian.

1 Introduction

The paper presents an implementation of a

neural network-based dependency parser using

TensorFlow and Keras1. The parser is trained and

evaluated on the Bulgarian Universal

Dependencies dataset.

The article introduces a model in its intermediate

stage of development, with the current focus

entirely on dependency analysis. At this stage, it

does not aim to predict parts of speech, lemmas,

etc. (these are expected to be added to the model

later). For this reason, only the results for Labeled

1 The code, written in Python 3.11, has been tested on Ubuntu

22.04.3 LTS running on WSL2. It is accessible at

https://github.com/nassoo/dependecy_parser. The necessary

packages are enumerated in the requirements.txt file.

Additionally, an environment.yml file is provided for

convenience. Note that the virtual environment includes

packages not directly used in the notebook, such as PyTorch

and Unlabeled Attachment Scores will be

presented.

1.1 Linguistic background

From a linguistic perspective, Generative

Grammar (GG) and Dependency Grammar (DG)

have emerged as the two primary approaches to

syntax study over the past few decades2. GG is a

grammar model that operates on the premise that a

sentence's syntactic structure is generated by a set

of rules. These rules are applied to a set of terminal

nodes, which are the words (or potentially empty

functional categories) of the sentence. The rules are

recursively applied until the sentence is parsed into

its smallest constituents. The result of constituency

parsing is a tree, known as a constituency parse

tree, which represents the sentence's syntactic

structure.

On the other hand, DG is a grammar model that

posits that a sentence's syntactic structure is

represented by a set of dependencies between the

sentence's words. These dependencies are directed

links between the words of the sentence and are

represented by a tree, known as a dependency parse

tree. The nodes of the dependency parse tree are the

words of the sentence, and the edges (arcs)

represent the dependencies between the words. The

dependency parse tree has a root node, typically the

main verb (predicate) of the sentence. This root

node has no incoming edges but can have multiple

outgoing edges. The dependency parse tree is a

directed acyclic graph (DAG), meaning there are

no cycles in the graph and only one path exists

between any two nodes in the tree.

and Transformers, which are for side experiments. If disk

space is limited, consider manually installing only the

necessary packages.
2 In fact, the concept behind the dependency approach dates

back several thousand years (Kruijff, 2002: 7-17). However,

it wasn't until the 20th century that it was formalized and

evolved into a comprehensive theory.

Dependency parser for Bulgarian

Atanas Atanasov

Faculty of Slavic Studies,

Sofia University "St. Kliment Ohridski"
atanasov@slav.uni-sofia.bg

98

In recent decades, Generative Grammar (GG)

has been the preferred approach for representing

syntactic structures in most linguistic studies.

However, due to advancements in Natural

Language Processing (NLP), particularly the

Universal Dependencies (UD) project and deep

learning models based on it, DG is gaining

popularity. The primary advantage of DG lies in its

simplicity and intuitiveness, despite GG's greater

expressiveness.

1.2 Universal Dependencies

 Marneffe et al. (2021) point out that "Universal

dependencies (UD) is a framework for

morphosyntactic annotation of human language,

which to date has been used to create treebanks for

more than 100 languages" and "the linguistic

theory of the UD framework ... draws on a long

tradition of typologically oriented grammatical

theories. Grammatical relations between words are

centrally used to explain how predicate–argument

structures are encoded morphosyntactically in

different languages while morphological features

and part-of-speech classes give the properties of

words". The UD project aims to facilitate

multilingual parser development, cross-lingual

learning, and parsing research from a language

typology perspective. It has significantly

influenced the field of Natural Language

Processing (NLP). The project provides a set of

universal guidelines, applicable to all languages,

with language-specific extensions. These

guidelines cover annotation at both the word level

(morphology) and the sentence level (syntax). The

UD treebanks, collections of annotated sentences,

serve as a valuable resource for training and

evaluating models such as part-of-speech taggers

and dependency parsers.

1.3 Dependency parsing background

Two primary data-driven approaches exist for

dependency parsing: transition-based and graph-

based methods (Kübler et al., 2009). The transition-

based (shift-reduce) approach is a greedy algorithm

that builds a dependency tree by applying a

sequence of actions to a partially built tree. They

maintain a stack and a buffer of words to be

processed. The parsing process starts with all

words in the buffer and an empty stack. The parser

can perform three types of actions: 'SHIFT' (moves

a word from the buffer to the stack); 'REDUCE'

(removes a word from the stack); 'ARC' (creates a

dependency relation between two words, one from

the stack and one from the buffer). The parser

makes these actions based on a set of features

extracted from the current state of the stack and

buffer, and the previously built dependency

relations. The process continues until the buffer is

empty and all words have been incorporated into

the dependency tree. These parsers do not use deep

learning algorithms for direct prediction of

dependencies, instead they use it to predict the next

action to be taken.

Graph-based parsers, on the other hand, work by

considering all possible dependency trees for a

sentence and choosing the one with the highest

score. The score of a tree is typically computed as

the sum of the scores of its individual

dependencies. The scoring function is learned from

a treebank during training. The learning process

involves finding weights for the features of the

dependencies such that the correct trees in the

training data get higher scores than incorrect trees.

Transition-based parsers are generally more

efficient, as they parse a sentence in linear time.

This makes them suitable for real-time applications

or large-scale data processing. However, these

parsers suffer from error propagation. The

decisions are made greedily, and once a parsing

action is taken, it cannot be undone. This means

that an error early in the parsing process can affect

the rest of the parse. Graph-based parsers often

achieve higher accuracy than transition-based

parsers. They globally optimize the parse tree of a

sentence, considering all possible trees before

making a decision. However, this global

optimization comes at a cost. Graph-based parsers

have a higher time complexity (usually cubic in the

length of the sentence), making them slower than

transition-based parsers.

The development of dependency parsing has

been significantly influenced by the CoNLL

Shared Tasks, which have provided standardized

datasets and evaluation benchmarks. The CoNLL

2017 (Zeman et al., 2017) and 2018 (Zeman et al.,

2018) Shared Tasks, in particular, focused on

multilingual dependency parsing, advancing the

field through cross-lingual comparisons. While this

work concentrates solely on the dependency

analysis of Bulgarian, insights gained from these

shared tasks have informed the approach to model

development and evaluation.

Proceedings of CLIB 2024

99

1.4 Deep Biaffine Attention

This paper presents an implementation of a

graph-based dependency parser, following the

algorithm proposed by Dozat and Manning (2017).

Their architecture utilizes a bi-LSTM

(Bidirectional Long Short-Term Memory) to read

the input sentence from both directions, thereby

capturing a rich set of syntactic and semantic

features. Furthermore, the authors introduce a

biaffine attention mechanism, which is a bilinear

function supplemented with an affine

transformation. Instead of employing shallow

bilinear attention that operates directly on recurrent

state representations, deep biaffine attention uses a

multi-layer perceptron (MLP) to project these

representations into a higher-dimensional space

prior to applying the bilinear attention function.

This approach enables the model to capture more

complex relationships between words and their

potential dependencies.

The parser proposed in this paper is trained and

evaluated using the Bulgarian UD treebank

(Osenova and Simov, 2015).

2 Data preparation

The UD treebanks come in various formats,

including CoNLL-U (a format used for linguistic

treebanks in the Conference on Natural Language

Learning), TensorFlow Datasets (TFDS), and

HuggingFace Datasets. Given that this project uses

TensorFlow, TFDS is the most convenient format.

The treebanks are always split into training,

development, and test sets.

The Bulgarian UD dataset includes 8,907

training sentences, 1,115 development sentences,

and 1,116 test sentences. This distribution, which

approximates an 80-10-10 split for training,

validation, and testing respectively, is typical for

UD treebanks. Given its suitability for developing

a neural network parser, no additional splitting of

the data is required.

In Dozat and Manning's architecture, only

specific parts of the data are utilized. The tokens

column, which contains the tokenized sentence,

and the upos column, which includes Universal

Part-of-Speech tags, are used to train the parser.

The deprel column, with dependency relations, and

the head column, indicating word head indices,

serve as the parser's targets. Given the focus on

using the parser for Bulgarian, as highlighted in the

Experiments and Results section, two additional

columns are incorporated into the input layers:

lemmas (containing the lemmatized forms of the

words) and xpos (providing more detailed

morphological language-specific information,

although these tags are not consistent across

languages).

After loading the data, the next step is to

construct vocabularies. These vocabularies consist

of unique words, lemmas, Universal Part-of-

Speech tags, language-specific tags, and

dependency relations from the training set, all of

which are converted into numerical representations

for model processing. The vocabularies facilitate

the conversion of words and tags into these

representations, while the dependency relations are

used to construct the target vectors for the parser.

The unique values from the dataset are extracted

and stored in TensorFlow's hash tables for more

efficient tensor handling. Special tokens are added

to equalize input sequence lengths, represent the

root of the dependency parse tree (the dummy

token that governs the main verb of the sentence),

and denote unknown words, tags, or relations.

These tables are utilized to convert between

numerical IDs and their corresponding labels

during both training and prediction.

A configuration management module was

implemented to streamline experimentation and

reproducibility. This module incorporates

hyperparameter loading from a JSON file and

manages essential data structures, such as hash

tables, necessary for both model training and data

preprocessing. By centralizing configuration

parameters, the development process was

optimized, facilitating efficient exploration of the

hyperparameter space.

The vectorization process is a critical step in

preparing the data for the neural network. This

process transforms the dataset into a format where

each element is a tuple of inputs and outputs.

The inputs consist of tokenized sentences,

Universal Part-of-Speech tags, lemmas, language-

specific tags, and sentence lengths. The outputs are

word head indices and dependency relations. Word

heads are cast to numbers (specifically, tf.int32 to

meet the requirements of

tf.lookup.StaticHashTable), while the remaining

elements are encoded as integers using their

respective hash tables. To ensure uniformity,

sequences are either padded or truncated to a

predetermined length, as specified in the

configuration. Each sequence begins with a

Proceedings of CLIB 2024

100

dummy value, and an additional token is included

in the sentence length to represent the root of the

dependency parse tree.

The vectorized inputs and outputs are then used

to generate a new dataset.

The data preparation process includes batching

and shuffling steps to optimize the training of the

neural network. In the batching step, the dataset is

divided into smaller groups or batches. Each batch

contains a certain number of examples that the

model will process simultaneously. The size of

these batches is a configurable parameter and can

be adjusted based on the computational resources

available.

The shuffling step randomizes the order of the

examples in the dataset. This is done to ensure that

the model does not learn any unintended patterns

from the order of the examples, which could lead

to overfitting. This step is performed before each

epoch, i.e., each pass through the entire dataset, to

ensure that the model is exposed to a different order

of examples in each epoch.

This dataset, vectorized and batched, can be

used for model training or prediction.

3 The model

This chapter introduces the primary neural

network model, designed for dependency parsing.

Built with TensorFlow and the Keras API, the

model incorporates several components. These

include embedding layers for words, lemmas, POS,

and language-specific tags, BiLSTM layers for

sentence encoding, and MLP layers for

transforming the sentence encodings into a form

suitable for predicting arcs and relations between

words. The model also features Biaffine layers,

which take these transformed outputs and make the

actual predictions of arcs and relations between

words.

The model is equipped with a custom loss

function and utilizes the Adam optimizer for

training. It also includes metrics for monitoring the

loss and accuracy during both training and

evaluation.

3.1 Model Architecture

As it was already mentioned, the model is based

on the architecture proposed in Deep Biaffine

Attention for Neural Dependency Parsing (Dozat

and Manning, 2017), which builds off the work

from Kiperwasser and Goldberg (2016) with a few

modifications. The graph-based algorithm is

illustrated in Figure 1.

Dozat and Manning use a larger but more

thoroughly regularized parser, with biaffine

classifiers to predict arcs and labels. They use

biaffine attention instead of bilinear or traditional

MLP-based attention; a biaffine dependency label

classifier; and apply dimension-reducing MLPs to

each recurrent output vector r𝑖 before applying the

biaffine transformation. The biaffine mechanism is

similar to traditional affine classifiers, where the

vector of scores s𝑖 for all classes equals the weight

matrix W multiplied by single LSTM output state

r𝑖 (or other vector input) plus the bias term b:

(1)
s𝑖 = 𝑊r𝑖 + b

(Fixed-class affine classifier)
In the biaffine mechanism, the weight matrix W

in (1) is replaced by a (𝑑 × 𝑑) linear

transformation of the stacked LSTM output 𝑅𝑈(1)

in (2) and a (𝑑 × 𝑑) transformation 𝑅u(2) replaces

the bias term b:

(2)
s𝑖

(𝑎𝑟𝑐)
= (𝑅𝑈(1))𝑟𝑖 + (𝑅u(2))

(Variable-class biaffine classifier)

Figure 1: The graph-based architecture, proposed by Dozat and Manning.

Proceedings of CLIB 2024

101

Along with being simpler than the MLP-based

approach, this has the conceptual advantage of

directly modeling both the prior probability of a

word 𝑗 receiving any dependents in the term r𝑗
⊺u(2)

and the likelihood of 𝑗 receiving a specific

dependent 𝑖 in the term r𝑗
⊺𝑈𝑖

(1)r
. The authors also

use a biaffine classifier to predict dependency

labels given the gold or predicted head 𝑦𝑖
:

(3)
s𝑖

(𝑙𝑎𝑏𝑒𝑙)
= r𝑦𝑖

⊺U(1)
𝑟𝑖 + (𝑟𝑦𝑖

⊗ 𝑟𝑖)
⊺
𝑈(2)

+ 𝑏
(Fixed-class biaffine classifier)

Dozat and Manning point out that applying

smaller MLPs to the recurrent output states before

the biaffine classifier has the advantage of stripping

away information not relevant to the current

decision. They also claim that reducing

dimensionality and applying a nonlinearity (4, 5, 6)

increases parsing speed and decreases the risk of

overfitting.

(4) h𝑖
(𝑎𝑟𝑐−𝑑𝑒𝑝)

= MLP(𝑎𝑟𝑐−𝑑𝑒𝑝)(r𝑖)

(5) h𝑗
(𝑎𝑟𝑐−ℎ𝑒𝑎𝑑)

= MLP(𝑎𝑟𝑐−ℎ𝑒𝑎𝑑)(𝑟𝑗)

(6)
s𝑖

(𝑎𝑟𝑐)
= 𝐻(𝑎𝑟𝑐−ℎ𝑒𝑎𝑑)𝑈(1)h𝑖

(𝑎𝑟𝑐−𝑑𝑒𝑝)

+ 𝐻(𝑎𝑟𝑐−ℎ𝑒𝑎𝑑)u(2)

They call this a deep bilinear attention

mechanism, as opposed to shallow bilinear

attention, which uses the recurrent states directly.

MLPs are applied to the recurrent states before

using them in the label classifier as well.

Figure 2: The architecture of the model with additional input layers.

Proceedings of CLIB 2024

102

3.2 Model Implementation

The parser proposed here is implemented

following this architecture, with some

modifications. Given that Bulgarian is a

morphologically rich language, the model includes

optional input layers for lemmas and

morphological tags. These additions could

potentially enhance its performance and warrant

further evaluation. The model is constructed using

the Keras API and features several custom

components.

The primary component is responsible for

constructing the neural network model. It includes

methods for building the model's components, such

as the embedding, BiLSTM, MLP, and biaffine

attention layers. The model is compiled with a

custom loss function, based on the sparse

categorical cross-entropy loss object. This function

computes the loss between the true and predicted

values for the arcs and relations, returning a tensor

that represents the average loss per example in the

batch. This average loss is used during training to

update the model's weights.

While the Adam optimizer is a popular choice

for training deep learning models due to its

adaptive learning rate, this implementation also

includes the option to use exponential decay to

potentially improve results.

The class tracks three metrics: the mean loss, the

unlabeled attachment score (UAS), and the labeled

attachment score (LAS).

Since TensorFlow does not provide a built-in

biaffine layer, a custom one is implemented to

perform the transformations. It follows the

formulas for calculating the scores for potential

arcs (6) and labels (3), and computes the weighted

sum of the input tensors according to the weight

matrix.

The model, comprising 31,036,906 parameters,

is depicted in Figure 2.

The training process includes an option to log

summaries in both TensorBoard and MLflow. This

feature allows for the monitoring and comparison

of all hyperparameter changes.

4 Experiments and Results

The model underwent testing on the Bulgarian

UD treebank with varying hyperparameters, and

the results were evaluated using the Unlabeled

Attachment Score (UAS) and Labeled Attachment

Score (LAS). The UAS measures the proportion of

words correctly attached to their head, while the

LAS measures the proportion of words correctly

attached to their head with the correct dependency

relation.

Optimal performance was achieved with a

higher dropout rate of 0.5, as opposed to the 0.33

reported by Dozat and Manning. This can be

attributed to the smaller size of the Bulgarian UD

treebank compared to the treebanks used in their

study, necessitating stronger regularization to

prevent overfitting and enhance generalization.

Modifications to the learning and decay rates did

not yield improved results. The best scores

achieved using exponential decay, tested with

values between 0.075 and 0.95, were 0.14% for

UAS and 0.08% lower than the scores reported in

Table 1. Similarly, increasing the batch size (and

correspondingly the number of epochs) did not

significantly affect performance. Specifically,

training with a batch size of 512 and 160 epochs

resulted in scores that were 1.04% lower for UAS

and 1.02% lower for LAS compared to training

with a batch size of 128 and 80 epochs with the

same hyperparameters.

A substantial improvement (0.86% for UAS and

1.31% for LAS) was observed upon the inclusion

of lemmas and language-specific morphological

information as input layers. This enhancement is

anticipated given the complexity of the Bulgarian

language and the significance of morphological

information in parsing it.

Another enhancement involved replacing the

traditional embedding layer for input tokens with

RoBERTa embeddings. This change leverages the

pre-trained model (Liu et al., 2019) to generate

contextualized embeddings, which capture richer

semantic and syntactic information. Since

RoBERTa is used in the current version of the

parser only for token vectorization, the

improvement is not particularly large (0.21% for

UAS and 0.49% for LAS). However, it still

demonstrates the advantage of using large language

models.

The model achieved a UAS of 93.32 and a LAS

of 89.73 on the test dataset, thereby demonstrating

its ability to accurately predict the dependency

parse tree of a sentence. Table 1 compares the

performance of this model with other models. It

surpasses the NLP pipeline for Bulgarian,

developed within the spaCy framework (Popov et

al., 2020). The model also yields superior results

(with a 1.90% increase on UAS and a 2.72%

Proceedings of CLIB 2024

103

increase on LAS) compared to the model by Dozat

and Manning, which uses only two input layers and

a dropout rate of 0.33. It is also ahead of NLP-Cube

(Boros et al., 2018) and UDPipe 2.0 (Straka, 2018).

However, it still falls short of UDify (Kondratyuk

and Straka, 2019). One reason for this could be that

UDify is trained multilingually. Nevertheless, even

when trained solely on Bulgarian, UDify's results

are closely matched, suggesting that its primary

advantage lies in the use of the BERT self-attention

model. It is worth noting that the presented model

is considerably smaller in size (especially when

trained without RoBERTa embeddings) compared

to UDify.

5 Future Work

The model performs well on the Bulgarian UD

treebank, with its results approaching those of

state-of-the-art parsers. However, further

improvements are necessary. Potential areas for

enhancement include:

• Hyperparameter tuning: The model's

hyperparameters can be further optimized to

improve its performance. This includes (but

not restricted to) the learning rate, the number

of layers in the BiLSTM, the number of units

in the MLPs, and the dropout rate.

• Better embeddings: The model can be

improved by using better word embeddings,

leveraging pre-trained large language models.

Another crucial step involves integrating POS

and XPOS annotations. Currently, the model

utilizes the CLASSLA library (Ljubešić and

Dobrovoljc, 2019; Terčon and Ljubešić, 2023) to

perform POS and XPOS tagging, which are then

used as inputs for sentence prediction. Therefore,

the next development step is to directly incorporate

this functionality by training a morphological

tagger.

While the focus of this study was specifically on

Bulgarian, the model should be evaluated with

other highly inflected languages to determine if the

inclusion of lemmas and morphological tags

improves performance for these languages as well.

6 Conclusion

The implementation of the neural network-

based dependency parser, utilizing TensorFlow and

Keras, gave near state-of-the-art results (UAS:

93.32, LAS: 89.73). The parser underwent training

and evaluation on the Bulgarian Universal

Dependencies dataset, yielding competitive results

and thereby demonstrating the efficacy of the

proposed architecture. Although the original model

by Dozat and Manning was evaluated on

considerably larger datasets and languages with

simpler morphological structures, the results are

comparable. For instance, the parser’s results for

Bulgarian outperforms the original model's scores

for Chinese and Czech, the latter possessing one of

the largest treebanks. The parser can predict the

dependency syntax structure of Bulgarian

sentences, and the displacy module from the spacy

library can visualize these predictions. The parser's

performance can be further enhanced by

optimizing its hyperparameters and employing

superior word embeddings.

References

Tiberiu Boros, Stefan Daniel Dumitrescu, and

Ruxandra Burtica. 2018. NLP-Cube: End-to-

End Raw Text Processing With Neural

Networks. In Proceedings of the CoNLL 2018

Shared Task: Multilingual Parsing from Raw

Text to Universal Dependencies, pages 171–179,

Brussels, Belgium. Association for

Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.

Deep Biaffine Attention for Neural Dependency

Parsing. In International Conference on

Learning Representations.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:

A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Eliyahu Kiperwasser and Yoav Goldberg. 2016.

Simple and accurate dependency parsing using

bidirectional LSTM feature representations.

Transactions of the Association for

Computational Linguistics 4: 313-327. MIT

Press.

Model UAS LAS

spaCy 88.95 83.03

Biaffine w/o morph 91.21 86.52

NLP-Cube 92.47 88.93

UDPipe 2.0 92.82 89.70

Biaffine with morph 93.32 89.73

UDify 95.54 92.40

Table 1: Results on Bulgarian UD dataset

Proceedings of CLIB 2024

104

Dan Kondratyuk and Milan Straka. 2019. 75

Languages, 1 Model: Parsing Universal

Dependencies Universally. In Proceedings of the

2019 Conference on Empirical Methods in

Natural Language Processing and the 9th

International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP), pages

2779–2795, Hong Kong, China. Association for

Computational Linguistics.

Geert-Jan Kruijff. 2002. Formal and computational

aspects of dependency grammar: History and

development of DG. Technical report, ESSLLI-

2002.

Sandra Kübler, Ryan McDonald and Joakim Nivre,

2009. Dependency Parsing. Synthesis lectures

on human language technologies 2. Morgan &

Claypool Publishers

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,

Mandar Joshi, Danqi Chen, Omer Levy, Mike

Lewis, Luke Zettlemoyer, and Veselin Stoyanov.

2019. RoBERTa: A Robustly Optimized BERT

Pretraining Approach.

https://arxiv.org/abs/1907.11692

Nikola Ljubešić and Kaja Dobrovoljc. 2019. What

does Neural Bring? Analysing Improvements in

Morphosyntactic Annotation and

Lemmatisation of Slovenian, Croatian and

Serbian. In Proceedings of the 7th Workshop on

Balto-Slavic Natural Language Processing,

pages 29–34, Florence, Italy. Association for

Computational Linguistics.

Marie-Catherine de Marneffe, Christopher

Manning, Joakim Nivre, and Daniel Zeman.

2021. Universal Dependencies. Computational

Linguistics 2021; 47 (2): 255–308.

Petya Osenova and Kiril Simov. 2015.

Universalizing BulTreeBank: a Linguistic Tale

about Glocalization. In Proceedings of BSNLP

2015, Hissar, Bulgaria.

Alexander Popov, Petya Osenova, and Kiril Simov.

2020. Implementing an End-to-End Treebank-

Informed Pipeline for Bulgarian. In Proceedings

of the 19th International Workshop on

Treebanks and Linguistic Theories, pages 162–

167, Düsseldorf, Germany. Association for

Computational Linguistics.

Milan Straka. 2018. UDPipe 2.0 Prototype at

CoNLL 2018 UD Shared Task. In Proceedings

of the CoNLL 2018 Shared Task: Multilingual

Parsing from Raw Text to Universal

Dependencies, pages 197–207, Brussels,

Belgium. Association for Computational

Linguistics.

Luka Terčon and Nikola Ljubešić. 2023.

CLASSLA-Stanza: The Next Step for Linguistic

Processing of South Slavic Languages.

arXiv:2308.04255.

Daniel Zeman, Martin Popel, Milan Straka, Jan

Hajič, Joakim Nivre, Filip Ginter, Juhani

Luotolahti, Sampo Pyysalo, Slav Petrov, Martin

Potthast, Francis Tyers, Elena Badmaeva,

Memduh Gokirmak, Anna Nedoluzhko, Silvie

Cinková, Jan Hajič jr., Jaroslava Hlaváčová,

Václava Kettnerová, Zdeňka Urešová, et al.

2017. CoNLL 2017 Shared Task: Multilingual

Parsing from Raw Text to Universal

Dependencies. In Proceedings of the CoNLL

2017 Shared Task: Multilingual Parsing from

Raw Text to Universal Dependencies, pages 1–

19, Vancouver, Canada. Association for

Computational Linguistics.

Daniel Zeman, Jan Hajič, Martin Popel, Martin

Potthast, Milan Straka, Filip Ginter, Joakim

Nivre, and Slav Petrov. 2018. CoNLL 2018

Shared Task: Multilingual Parsing from Raw

Text to Universal Dependencies. In Proceedings

of the CoNLL 2018 Shared Task: Multilingual

Parsing from Raw Text to Universal

Dependencies, pages 1–21, Brussels, Belgium.

Association for Computational Linguistics.

Proceedings of CLIB 2024

105

