
 
 

Abstract 

This paper delves into the implementation of 

a Biaffine Attention Model, a sophisticated 

neural network architecture employed for 

dependency parsing tasks. Proposed by Dozat 

and Manning, this model is applied to 

Bulgarian language processing. The model's 

training and evaluation are conducted using 

the Bulgarian Universal Dependencies 

dataset. The paper offers a comprehensive 

explanation of the model's architecture and 

the data preparation process, aiming to 

demonstrate that for highly inflected 

languages, the inclusion of two additional 

input layers - lemmas and language-specific 

morphological information - is beneficial. The 

results of the experiments are subsequently 

presented and discussed. The paper concludes 

with a reflection on the model's performance 

and suggestions for potential future work. 

Keywords: syntactic parsing, Universal 

Dependencies, Biaffine Attention, Bulgarian. 

1 Introduction 

The paper presents an implementation of a 

neural network-based dependency parser using 

TensorFlow and Keras1. The parser is trained and 

evaluated on the Bulgarian Universal 

Dependencies dataset. 

The article introduces a model in its intermediate 

stage of development, with the current focus 

entirely on dependency analysis. At this stage, it 

does not aim to predict parts of speech, lemmas, 

etc. (these are expected to be added to the model 

later). For this reason, only the results for Labeled 

 
1 The code, written in Python 3.11, has been tested on Ubuntu 

22.04.3 LTS running on WSL2. It is accessible at 

https://github.com/nassoo/dependecy_parser. The necessary 

packages are enumerated in the requirements.txt file. 

Additionally, an environment.yml file is provided for 

convenience. Note that the virtual environment includes 

packages not directly used in the notebook, such as PyTorch 

and Unlabeled Attachment Scores will be 

presented. 

1.1 Linguistic background 

From a linguistic perspective, Generative 

Grammar (GG) and Dependency Grammar (DG) 

have emerged as the two primary approaches to 

syntax study over the past few decades2. GG is a 

grammar model that operates on the premise that a 

sentence's syntactic structure is generated by a set 

of rules. These rules are applied to a set of terminal 

nodes, which are the words (or potentially empty 

functional categories) of the sentence. The rules are 

recursively applied until the sentence is parsed into 

its smallest constituents. The result of constituency 

parsing is a tree, known as a constituency parse 

tree, which represents the sentence's syntactic 

structure. 

On the other hand, DG is a grammar model that 

posits that a sentence's syntactic structure is 

represented by a set of dependencies between the 

sentence's words. These dependencies are directed 

links between the words of the sentence and are 

represented by a tree, known as a dependency parse 

tree. The nodes of the dependency parse tree are the 

words of the sentence, and the edges (arcs) 

represent the dependencies between the words. The 

dependency parse tree has a root node, typically the 

main verb (predicate) of the sentence. This root 

node has no incoming edges but can have multiple 

outgoing edges. The dependency parse tree is a 

directed acyclic graph (DAG), meaning there are 

no cycles in the graph and only one path exists 

between any two nodes in the tree. 

and Transformers, which are for side experiments. If disk 

space is limited, consider manually installing only the 

necessary packages. 
2 In fact, the concept behind the dependency approach dates 

back several thousand years (Kruijff, 2002: 7-17). However, 

it wasn't until the 20th century that it was formalized and 

evolved into a comprehensive theory. 
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In recent decades, Generative Grammar (GG) 

has been the preferred approach for representing 

syntactic structures in most linguistic studies. 

However, due to advancements in Natural 

Language Processing (NLP), particularly the 

Universal Dependencies (UD) project and deep 

learning models based on it, DG is gaining 

popularity. The primary advantage of DG lies in its 

simplicity and intuitiveness, despite GG's greater 

expressiveness. 

1.2 Universal Dependencies 

 Marneffe et al. (2021) point out that "Universal 

dependencies (UD) is a framework for 

morphosyntactic annotation of human language, 

which to date has been used to create treebanks for 

more than 100 languages" and "the linguistic 

theory of the UD framework ... draws on a long 

tradition of typologically oriented grammatical 

theories. Grammatical relations between words are 

centrally used to explain how predicate–argument 

structures are encoded morphosyntactically in 

different languages while morphological features 

and part-of-speech classes give the properties of 

words". The UD project aims to facilitate 

multilingual parser development, cross-lingual 

learning, and parsing research from a language 

typology perspective. It has significantly 

influenced the field of Natural Language 

Processing (NLP). The project provides a set of 

universal guidelines, applicable to all languages, 

with language-specific extensions. These 

guidelines cover annotation at both the word level 

(morphology) and the sentence level (syntax). The 

UD treebanks, collections of annotated sentences, 

serve as a valuable resource for training and 

evaluating models such as part-of-speech taggers 

and dependency parsers. 

1.3 Dependency parsing background 

Two primary data-driven approaches exist for 

dependency parsing: transition-based and graph-

based methods (Kübler et al., 2009). The transition-

based (shift-reduce) approach is a greedy algorithm 

that builds a dependency tree by applying a 

sequence of actions to a partially built tree. They 

maintain a stack and a buffer of words to be 

processed. The parsing process starts with all 

words in the buffer and an empty stack. The parser 

can perform three types of actions: 'SHIFT' (moves 

a word from the buffer to the stack); 'REDUCE' 

(removes a word from the stack); 'ARC' (creates a 

dependency relation between two words, one from 

the stack and one from the buffer). The parser 

makes these actions based on a set of features 

extracted from the current state of the stack and 

buffer, and the previously built dependency 

relations. The process continues until the buffer is 

empty and all words have been incorporated into 

the dependency tree. These parsers do not use deep 

learning algorithms for direct prediction of 

dependencies, instead they use it to predict the next 

action to be taken.  

Graph-based parsers, on the other hand, work by 

considering all possible dependency trees for a 

sentence and choosing the one with the highest 

score. The score of a tree is typically computed as 

the sum of the scores of its individual 

dependencies. The scoring function is learned from 

a treebank during training. The learning process 

involves finding weights for the features of the 

dependencies such that the correct trees in the 

training data get higher scores than incorrect trees.  

Transition-based parsers are generally more 

efficient, as they parse a sentence in linear time. 

This makes them suitable for real-time applications 

or large-scale data processing. However, these 

parsers suffer from error propagation. The 

decisions are made greedily, and once a parsing 

action is taken, it cannot be undone. This means 

that an error early in the parsing process can affect 

the rest of the parse. Graph-based parsers often 

achieve higher accuracy than transition-based 

parsers. They globally optimize the parse tree of a 

sentence, considering all possible trees before 

making a decision. However, this global 

optimization comes at a cost. Graph-based parsers 

have a higher time complexity (usually cubic in the 

length of the sentence), making them slower than 

transition-based parsers. 

The development of dependency parsing has 

been significantly influenced by the CoNLL 

Shared Tasks, which have provided standardized 

datasets and evaluation benchmarks. The CoNLL 

2017 (Zeman et al., 2017) and 2018 (Zeman et al., 

2018) Shared Tasks, in particular, focused on 

multilingual dependency parsing, advancing the 

field through cross-lingual comparisons. While this 

work concentrates solely on the dependency 

analysis of Bulgarian, insights gained from these 

shared tasks have informed the approach to model 

development and evaluation. 
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1.4 Deep Biaffine Attention 

This paper presents an implementation of a 

graph-based dependency parser, following the 

algorithm proposed by Dozat and Manning (2017). 

Their architecture utilizes a bi-LSTM 

(Bidirectional Long Short-Term Memory) to read 

the input sentence from both directions, thereby 

capturing a rich set of syntactic and semantic 

features. Furthermore, the authors introduce a 

biaffine attention mechanism, which is a bilinear 

function supplemented with an affine 

transformation. Instead of employing shallow 

bilinear attention that operates directly on recurrent 

state representations, deep biaffine attention uses a 

multi-layer perceptron (MLP) to project these 

representations into a higher-dimensional space 

prior to applying the bilinear attention function. 

This approach enables the model to capture more 

complex relationships between words and their 

potential dependencies. 

The parser proposed in this paper is trained and 

evaluated using the Bulgarian UD treebank 

(Osenova and Simov, 2015). 

2 Data preparation 

The UD treebanks come in various formats, 

including CoNLL-U (a format used for linguistic 

treebanks in the Conference on Natural Language 

Learning), TensorFlow Datasets (TFDS), and 

HuggingFace Datasets. Given that this project uses 

TensorFlow, TFDS is the most convenient format. 

The treebanks are always split into training, 

development, and test sets. 

The Bulgarian UD dataset includes 8,907 

training sentences, 1,115 development sentences, 

and 1,116 test sentences. This distribution, which 

approximates an 80-10-10 split for training, 

validation, and testing respectively, is typical for 

UD treebanks. Given its suitability for developing 

a neural network parser, no additional splitting of 

the data is required. 

In Dozat and Manning's architecture, only 

specific parts of the data are utilized. The tokens 

column, which contains the tokenized sentence, 

and the upos column, which includes Universal 

Part-of-Speech tags, are used to train the parser. 

The deprel column, with dependency relations, and 

the head column, indicating word head indices, 

serve as the parser's targets. Given the focus on 

using the parser for Bulgarian, as highlighted in the 

Experiments and Results section, two additional 

columns are incorporated into the input layers: 

lemmas (containing the lemmatized forms of the 

words) and xpos (providing more detailed 

morphological language-specific information, 

although these tags are not consistent across 

languages). 

After loading the data, the next step is to 

construct vocabularies. These vocabularies consist 

of unique words, lemmas, Universal Part-of-

Speech tags, language-specific tags, and 

dependency relations from the training set, all of 

which are converted into numerical representations 

for model processing. The vocabularies facilitate 

the conversion of words and tags into these 

representations, while the dependency relations are 

used to construct the target vectors for the parser. 

The unique values from the dataset are extracted 

and stored in TensorFlow's hash tables for more 

efficient tensor handling. Special tokens are added 

to equalize input sequence lengths, represent the 

root of the dependency parse tree (the dummy 

token that governs the main verb of the sentence), 

and denote unknown words, tags, or relations. 

These tables are utilized to convert between 

numerical IDs and their corresponding labels 

during both training and prediction. 

A configuration management module was 

implemented to streamline experimentation and 

reproducibility. This module incorporates 

hyperparameter loading from a JSON file and 

manages essential data structures, such as hash 

tables, necessary for both model training and data 

preprocessing. By centralizing configuration 

parameters, the development process was 

optimized, facilitating efficient exploration of the 

hyperparameter space. 

The vectorization process is a critical step in 

preparing the data for the neural network. This 

process transforms the dataset into a format where 

each element is a tuple of inputs and outputs.  

The inputs consist of tokenized sentences, 

Universal Part-of-Speech tags, lemmas, language-

specific tags, and sentence lengths. The outputs are 

word head indices and dependency relations. Word 

heads are cast to numbers (specifically, tf.int32 to 

meet the requirements of 

tf.lookup.StaticHashTable), while the remaining 

elements are encoded as integers using their 

respective hash tables. To ensure uniformity, 

sequences are either padded or truncated to a 

predetermined length, as specified in the 

configuration. Each sequence begins with a 
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dummy value, and an additional token is included 

in the sentence length to represent the root of the 

dependency parse tree. 

The vectorized inputs and outputs are then used 

to generate a new dataset.  

The data preparation process includes batching 

and shuffling steps to optimize the training of the 

neural network. In the batching step, the dataset is 

divided into smaller groups or batches. Each batch 

contains a certain number of examples that the 

model will process simultaneously. The size of 

these batches is a configurable parameter and can 

be adjusted based on the computational resources 

available. 

The shuffling step randomizes the order of the 

examples in the dataset. This is done to ensure that 

the model does not learn any unintended patterns 

from the order of the examples, which could lead 

to overfitting. This step is performed before each 

epoch, i.e., each pass through the entire dataset, to 

ensure that the model is exposed to a different order 

of examples in each epoch. 

This dataset, vectorized and batched, can be 

used for model training or prediction. 

3 The model 

This chapter introduces the primary neural 

network model, designed for dependency parsing. 

Built with TensorFlow and the Keras API, the 

model incorporates several components. These 

include embedding layers for words, lemmas, POS, 

and language-specific tags, BiLSTM layers for 

sentence encoding, and MLP layers for 

transforming the sentence encodings into a form 

suitable for predicting arcs and relations between 

words. The model also features Biaffine layers, 

which take these transformed outputs and make the 

actual predictions of arcs and relations between 

words. 

The model is equipped with a custom loss 

function and utilizes the Adam optimizer for 

training. It also includes metrics for monitoring the 

loss and accuracy during both training and 

evaluation. 

3.1 Model Architecture 

As it was already mentioned, the model is based 

on the architecture proposed in Deep Biaffine 

Attention for Neural Dependency Parsing (Dozat 

and Manning, 2017), which builds off the work 

from Kiperwasser and Goldberg (2016) with a few 

modifications. The graph-based algorithm is 

illustrated in Figure 1.  

Dozat and Manning use a larger but more 

thoroughly regularized parser, with biaffine 

classifiers to predict arcs and labels. They use 

biaffine attention instead of bilinear or traditional 

MLP-based attention; a biaffine dependency label 

classifier; and apply dimension-reducing MLPs to 

each recurrent output vector r𝑖 before applying the 

biaffine transformation. The biaffine mechanism is 

similar to traditional affine classifiers, where the 

vector of scores s𝑖 for all classes equals the weight 

matrix W multiplied by single LSTM output state 

r𝑖 (or other vector input) plus the bias term b:  

(1) 
s𝑖 = 𝑊r𝑖 + b 

(Fixed-class affine classifier) 
In the biaffine mechanism, the weight matrix W 

in (1) is replaced by a (𝑑 × 𝑑) linear 

transformation of the stacked LSTM output 𝑅𝑈(1) 

in (2) and a (𝑑 × 𝑑) transformation 𝑅u(2) replaces 

the bias term b: 

(2) 
s𝑖

(𝑎𝑟𝑐)
= (𝑅𝑈(1))𝑟𝑖 + (𝑅u(2)) 

(Variable-class biaffine classifier) 

Figure 1: The graph-based architecture, proposed by Dozat and Manning. 

Proceedings of CLIB 2024

101



 
 

Along with being simpler than the MLP-based 

approach, this has the conceptual advantage of 

directly modeling both the prior probability of a 

word 𝑗 receiving any dependents in the term r𝑗
⊺u(2)

 

and the likelihood of 𝑗 receiving a specific 

dependent 𝑖 in the term r𝑗
⊺𝑈𝑖

(1)r
. The authors also 

use a biaffine classifier to predict dependency 

labels given the gold or predicted head 𝑦𝑖
: 

(3) 
s𝑖

(𝑙𝑎𝑏𝑒𝑙)
= r𝑦𝑖

⊺U(1)
𝑟𝑖 + (𝑟𝑦𝑖

⊗ 𝑟𝑖)
⊺
𝑈(2)

+ 𝑏 
(Fixed-class biaffine classifier) 

Dozat and Manning point out that applying 

smaller MLPs to the recurrent output states before 

the biaffine classifier has the advantage of stripping 

away information not relevant to the current 

decision. They also claim that reducing 

dimensionality and applying a nonlinearity (4, 5, 6) 

increases parsing speed and decreases the risk of 

overfitting. 

(4) h𝑖
(𝑎𝑟𝑐−𝑑𝑒𝑝)

= MLP(𝑎𝑟𝑐−𝑑𝑒𝑝)(r𝑖) 

(5) h𝑗
(𝑎𝑟𝑐−ℎ𝑒𝑎𝑑)

= MLP(𝑎𝑟𝑐−ℎ𝑒𝑎𝑑)(𝑟𝑗) 

(6) 
s𝑖

(𝑎𝑟𝑐)
= 𝐻(𝑎𝑟𝑐−ℎ𝑒𝑎𝑑)𝑈(1)h𝑖

(𝑎𝑟𝑐−𝑑𝑒𝑝)

+ 𝐻(𝑎𝑟𝑐−ℎ𝑒𝑎𝑑)u(2) 

They call this a deep bilinear attention 

mechanism, as opposed to shallow bilinear 

attention, which uses the recurrent states directly.  

MLPs are applied to the recurrent states before 

using them in the label classifier as well. 

Figure 2: The architecture of the model with additional input layers. 
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3.2 Model Implementation 

The parser proposed here is implemented 

following this architecture, with some 

modifications. Given that Bulgarian is a 

morphologically rich language, the model includes 

optional input layers for lemmas and 

morphological tags. These additions could 

potentially enhance its performance and warrant 

further evaluation. The model is constructed using 

the Keras API and features several custom 

components. 

The primary component is responsible for 

constructing the neural network model. It includes 

methods for building the model's components, such 

as the embedding, BiLSTM, MLP, and biaffine 

attention layers. The model is compiled with a 

custom loss function, based on the sparse 

categorical cross-entropy loss object. This function 

computes the loss between the true and predicted 

values for the arcs and relations, returning a tensor 

that represents the average loss per example in the 

batch. This average loss is used during training to 

update the model's weights. 

While the Adam optimizer is a popular choice 

for training deep learning models due to its 

adaptive learning rate, this implementation also 

includes the option to use exponential decay to 

potentially improve results.  

The class tracks three metrics: the mean loss, the 

unlabeled attachment score (UAS), and the labeled 

attachment score (LAS). 

Since TensorFlow does not provide a built-in 

biaffine layer, a custom one is implemented to 

perform the transformations. It follows the 

formulas for calculating the scores for potential 

arcs (6) and labels (3), and computes the weighted 

sum of the input tensors according to the weight 

matrix. 

The model, comprising 31,036,906 parameters, 

is depicted in Figure 2.  

The training process includes an option to log 

summaries in both TensorBoard and MLflow. This 

feature allows for the monitoring and comparison 

of all hyperparameter changes. 

4 Experiments and Results 

The model underwent testing on the Bulgarian 

UD treebank with varying hyperparameters, and 

the results were evaluated using the Unlabeled 

Attachment Score (UAS) and Labeled Attachment 

Score (LAS). The UAS measures the proportion of 

words correctly attached to their head, while the 

LAS measures the proportion of words correctly 

attached to their head with the correct dependency 

relation.  

Optimal performance was achieved with a 

higher dropout rate of 0.5, as opposed to the 0.33 

reported by Dozat and Manning. This can be 

attributed to the smaller size of the Bulgarian UD 

treebank compared to the treebanks used in their 

study, necessitating stronger regularization to 

prevent overfitting and enhance generalization.  

Modifications to the learning and decay rates did 

not yield improved results. The best scores 

achieved using exponential decay, tested with 

values between 0.075 and 0.95, were 0.14% for 

UAS and 0.08% lower than the scores reported in 

Table 1. Similarly, increasing the batch size (and 

correspondingly the number of epochs) did not 

significantly affect performance. Specifically, 

training with a batch size of 512 and 160 epochs 

resulted in scores that were 1.04% lower for UAS 

and 1.02% lower for LAS compared to training 

with a batch size of 128 and 80 epochs with the 

same hyperparameters.  

A substantial improvement (0.86% for UAS and 

1.31% for LAS) was observed upon the inclusion 

of lemmas and language-specific morphological 

information as input layers. This enhancement is 

anticipated given the complexity of the Bulgarian 

language and the significance of morphological 

information in parsing it.  

Another enhancement involved replacing the 

traditional embedding layer for input tokens with 

RoBERTa embeddings. This change leverages the 

pre-trained model (Liu et al., 2019) to generate 

contextualized embeddings, which capture richer 

semantic and syntactic information. Since 

RoBERTa is used in the current version of the 

parser only for token vectorization, the 

improvement is not particularly large (0.21% for 

UAS and 0.49% for LAS). However, it still 

demonstrates the advantage of using large language 

models. 

The model achieved a UAS of 93.32 and a LAS 

of 89.73 on the test dataset, thereby demonstrating 

its ability to accurately predict the dependency 

parse tree of a sentence. Table 1 compares the 

performance of this model with other models. It 

surpasses the NLP pipeline for Bulgarian, 

developed within the spaCy framework (Popov et 

al., 2020). The model also yields superior results 

(with a 1.90% increase on UAS and a 2.72% 

Proceedings of CLIB 2024

103



 
 

increase on LAS) compared to the model by Dozat 

and Manning, which uses only two input layers and 

a dropout rate of 0.33. It is also ahead of NLP-Cube 

(Boros et al., 2018) and UDPipe 2.0 (Straka, 2018). 

However, it still falls short of UDify (Kondratyuk 

and Straka, 2019). One reason for this could be that 

UDify is trained multilingually. Nevertheless, even 

when trained solely on Bulgarian, UDify's results 

are closely matched, suggesting that its primary 

advantage lies in the use of the BERT self-attention 

model. It is worth noting that the presented model 

is considerably smaller in size (especially when 

trained without RoBERTa embeddings) compared 

to UDify. 

5 Future Work 

The model performs well on the Bulgarian UD 

treebank, with its results approaching those of 

state-of-the-art parsers. However, further 

improvements are necessary. Potential areas for 

enhancement include: 

• Hyperparameter tuning: The model's 

hyperparameters can be further optimized to 

improve its performance. This includes (but 

not restricted to) the learning rate, the number 

of layers in the BiLSTM, the number of units 

in the MLPs, and the dropout rate. 

• Better embeddings: The model can be 

improved by using better word embeddings, 

leveraging pre-trained large language models. 

Another crucial step involves integrating POS 

and XPOS annotations. Currently, the model 

utilizes the CLASSLA library (Ljubešić and 

Dobrovoljc, 2019; Terčon and Ljubešić, 2023) to 

perform POS and XPOS tagging, which are then 

used as inputs for sentence prediction. Therefore, 

the next development step is to directly incorporate 

this functionality by training a morphological 

tagger. 

While the focus of this study was specifically on 

Bulgarian, the model should be evaluated with 

other highly inflected languages to determine if the 

inclusion of lemmas and morphological tags 

improves performance for these languages as well. 

6 Conclusion 

The implementation of the neural network-

based dependency parser, utilizing TensorFlow and 

Keras, gave near state-of-the-art results (UAS: 

93.32, LAS: 89.73). The parser underwent training 

and evaluation on the Bulgarian Universal 

Dependencies dataset, yielding competitive results 

and thereby demonstrating the efficacy of the 

proposed architecture. Although the original model 

by Dozat and Manning was evaluated on 

considerably larger datasets and languages with 

simpler morphological structures, the results are 

comparable. For instance, the parser’s results for 

Bulgarian outperforms the original model's scores 

for Chinese and Czech, the latter possessing one of 

the largest treebanks. The parser can predict the 

dependency syntax structure of Bulgarian 

sentences, and the displacy module from the spacy 

library can visualize these predictions. The parser's 

performance can be further enhanced by 

optimizing its hyperparameters and employing 

superior word embeddings. 
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