@inproceedings{tamburini-2024-complexifying,
title = "Complexifying {BERT} Using {L}o{RA} Adapters",
author = "Tamburini, Fabio",
editor = "Dell'Orletta, Felice and
Lenci, Alessandro and
Montemagni, Simonetta and
Sprugnoli, Rachele",
booktitle = "Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)",
month = dec,
year = "2024",
address = "Pisa, Italy",
publisher = "CEUR Workshop Proceedings",
url = "https://aclanthology.org/2024.clicit-1.102/",
pages = "948--954",
ISBN = "979-12-210-7060-6",
abstract = "This paper presents the first results of a pilot study for transforming a real-valued pre-trained transformer encoder into a complex-valued one. Following recent findings about pre-training using LoRA, the main idea is to employ complex-valued LoRA adapters to make the trick and continue the pre-training of a given Italian model for setting up the adapters. After pre-training, the proposed complex-valued model has been evaluated on a standardised benchmark for Italian natural-language understanding obtaining very encouraging results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tamburini-2024-complexifying">
<titleInfo>
<title>Complexifying BERT Using LoRA Adapters</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="family">Tamburini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Felice</namePart>
<namePart type="family">Dell’Orletta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simonetta</namePart>
<namePart type="family">Montemagni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachele</namePart>
<namePart type="family">Sprugnoli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>CEUR Workshop Proceedings</publisher>
<place>
<placeTerm type="text">Pisa, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-12-210-7060-6</identifier>
</relatedItem>
<abstract>This paper presents the first results of a pilot study for transforming a real-valued pre-trained transformer encoder into a complex-valued one. Following recent findings about pre-training using LoRA, the main idea is to employ complex-valued LoRA adapters to make the trick and continue the pre-training of a given Italian model for setting up the adapters. After pre-training, the proposed complex-valued model has been evaluated on a standardised benchmark for Italian natural-language understanding obtaining very encouraging results.</abstract>
<identifier type="citekey">tamburini-2024-complexifying</identifier>
<location>
<url>https://aclanthology.org/2024.clicit-1.102/</url>
</location>
<part>
<date>2024-12</date>
<extent unit="page">
<start>948</start>
<end>954</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Complexifying BERT Using LoRA Adapters
%A Tamburini, Fabio
%Y Dell’Orletta, Felice
%Y Lenci, Alessandro
%Y Montemagni, Simonetta
%Y Sprugnoli, Rachele
%S Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)
%D 2024
%8 December
%I CEUR Workshop Proceedings
%C Pisa, Italy
%@ 979-12-210-7060-6
%F tamburini-2024-complexifying
%X This paper presents the first results of a pilot study for transforming a real-valued pre-trained transformer encoder into a complex-valued one. Following recent findings about pre-training using LoRA, the main idea is to employ complex-valued LoRA adapters to make the trick and continue the pre-training of a given Italian model for setting up the adapters. After pre-training, the proposed complex-valued model has been evaluated on a standardised benchmark for Italian natural-language understanding obtaining very encouraging results.
%U https://aclanthology.org/2024.clicit-1.102/
%P 948-954
Markdown (Informal)
[Complexifying BERT Using LoRA Adapters](https://aclanthology.org/2024.clicit-1.102/) (Tamburini, CLiC-it 2024)
ACL
- Fabio Tamburini. 2024. Complexifying BERT Using LoRA Adapters. In Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024), pages 948–954, Pisa, Italy. CEUR Workshop Proceedings.