@inproceedings{manai-etal-2024-idre,
title = "{IDRE}: {AI} Generated Dataset for Enhancing Empathetic Chatbot Interactions in {I}talian Language.",
author = "Manai, Simone and
Gemme, Laura and
Zanoli, Roberto and
Lavelli, Alberto",
editor = "Dell'Orletta, Felice and
Lenci, Alessandro and
Montemagni, Simonetta and
Sprugnoli, Rachele",
booktitle = "Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)",
month = dec,
year = "2024",
address = "Pisa, Italy",
publisher = "CEUR Workshop Proceedings",
url = "https://aclanthology.org/2024.clicit-1.113/",
pages = "1036--1042",
ISBN = "979-12-210-7060-6",
abstract = "This paper introduces IDRE (Italian Dataset for Rephrasing with Empathy), a novel automatically generated Italian linguistic dataset. IDRE comprises typical chatbot user utterances in the healthcare domain, corresponding chatbot responses, and empathetically enhanced chatbot responses. The dataset was generated using the Llama2 language model and evaluated by human raters based on predefined metrics. The IDRE dataset offers a comprehensive and realistic collection of Italian chatbot-user interactions suitable for training and refining chatbot models in the healthcare domain. This facilitates the development of chatbots capable of natural and productive conversations with healthcare users. Notably, the dataset incorporates empathetically enhanced chatbot responses, enabling researchers to investigate the effects of empathetic language on fostering more positive and engaging human-machine interactions within healthcare settings. The methodology employed for the construction of the IDRE dataset can be extended to generate phrases in additional languages and domains, thereby expanding its applicability and utility. The IDRE dataset is publicly available for research purposes."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="manai-etal-2024-idre">
<titleInfo>
<title>IDRE: AI Generated Dataset for Enhancing Empathetic Chatbot Interactions in Italian Language.</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simone</namePart>
<namePart type="family">Manai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Gemme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Zanoli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Lavelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Felice</namePart>
<namePart type="family">Dell’Orletta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simonetta</namePart>
<namePart type="family">Montemagni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachele</namePart>
<namePart type="family">Sprugnoli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>CEUR Workshop Proceedings</publisher>
<place>
<placeTerm type="text">Pisa, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-12-210-7060-6</identifier>
</relatedItem>
<abstract>This paper introduces IDRE (Italian Dataset for Rephrasing with Empathy), a novel automatically generated Italian linguistic dataset. IDRE comprises typical chatbot user utterances in the healthcare domain, corresponding chatbot responses, and empathetically enhanced chatbot responses. The dataset was generated using the Llama2 language model and evaluated by human raters based on predefined metrics. The IDRE dataset offers a comprehensive and realistic collection of Italian chatbot-user interactions suitable for training and refining chatbot models in the healthcare domain. This facilitates the development of chatbots capable of natural and productive conversations with healthcare users. Notably, the dataset incorporates empathetically enhanced chatbot responses, enabling researchers to investigate the effects of empathetic language on fostering more positive and engaging human-machine interactions within healthcare settings. The methodology employed for the construction of the IDRE dataset can be extended to generate phrases in additional languages and domains, thereby expanding its applicability and utility. The IDRE dataset is publicly available for research purposes.</abstract>
<identifier type="citekey">manai-etal-2024-idre</identifier>
<location>
<url>https://aclanthology.org/2024.clicit-1.113/</url>
</location>
<part>
<date>2024-12</date>
<extent unit="page">
<start>1036</start>
<end>1042</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IDRE: AI Generated Dataset for Enhancing Empathetic Chatbot Interactions in Italian Language.
%A Manai, Simone
%A Gemme, Laura
%A Zanoli, Roberto
%A Lavelli, Alberto
%Y Dell’Orletta, Felice
%Y Lenci, Alessandro
%Y Montemagni, Simonetta
%Y Sprugnoli, Rachele
%S Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)
%D 2024
%8 December
%I CEUR Workshop Proceedings
%C Pisa, Italy
%@ 979-12-210-7060-6
%F manai-etal-2024-idre
%X This paper introduces IDRE (Italian Dataset for Rephrasing with Empathy), a novel automatically generated Italian linguistic dataset. IDRE comprises typical chatbot user utterances in the healthcare domain, corresponding chatbot responses, and empathetically enhanced chatbot responses. The dataset was generated using the Llama2 language model and evaluated by human raters based on predefined metrics. The IDRE dataset offers a comprehensive and realistic collection of Italian chatbot-user interactions suitable for training and refining chatbot models in the healthcare domain. This facilitates the development of chatbots capable of natural and productive conversations with healthcare users. Notably, the dataset incorporates empathetically enhanced chatbot responses, enabling researchers to investigate the effects of empathetic language on fostering more positive and engaging human-machine interactions within healthcare settings. The methodology employed for the construction of the IDRE dataset can be extended to generate phrases in additional languages and domains, thereby expanding its applicability and utility. The IDRE dataset is publicly available for research purposes.
%U https://aclanthology.org/2024.clicit-1.113/
%P 1036-1042
Markdown (Informal)
[IDRE: AI Generated Dataset for Enhancing Empathetic Chatbot Interactions in Italian Language.](https://aclanthology.org/2024.clicit-1.113/) (Manai et al., CLiC-it 2024)
ACL