AMELIA - Argument Mining Evaluation on Legal documents in ItAlian: A CALAMITA Challenge

Giulia Grundler, Andrea Galassi, Piera Santin, Alessia Fidelangeli, Federico Galli, Elena Palmieri, Francesca Lagioia, Giovanni Sartor, Paolo Torroni


Abstract
This challenge consists of three classification tasks, in the context of argument mining in the legal domain. The tasks are based on a dataset of 225 Italian decisions on Value Added Tax, annotated to identify and categorize argumentative text. The objective of the first task is to classify each argumentative component as premise or conclusion, while the second and third tasks aim at classifying the type of premise: legal vs factual, and its corresponding argumentation scheme. The classes are highly unbalanced, hence evaluation is based on the macro F1 score.
Anthology ID:
2024.clicit-1.124
Volume:
Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)
Month:
December
Year:
2024
Address:
Pisa, Italy
Editors:
Felice Dell'Orletta, Alessandro Lenci, Simonetta Montemagni, Rachele Sprugnoli
Venue:
CLiC-it
SIG:
Publisher:
CEUR Workshop Proceedings
Note:
Pages:
1125–1134
Language:
URL:
https://aclanthology.org/2024.clicit-1.124/
DOI:
Bibkey:
Cite (ACL):
Giulia Grundler, Andrea Galassi, Piera Santin, Alessia Fidelangeli, Federico Galli, Elena Palmieri, Francesca Lagioia, Giovanni Sartor, and Paolo Torroni. 2024. AMELIA - Argument Mining Evaluation on Legal documents in ItAlian: A CALAMITA Challenge. In Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024), pages 1125–1134, Pisa, Italy. CEUR Workshop Proceedings.
Cite (Informal):
AMELIA - Argument Mining Evaluation on Legal documents in ItAlian: A CALAMITA Challenge (Grundler et al., CLiC-it 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.clicit-1.124.pdf