@inproceedings{ciaccio-etal-2024-controllable,
title = "Controllable Text Generation to Evaluate Linguistic Abilities of {I}talian {LLM}s",
author = "Ciaccio, Cristiano and
Dell{'}orletta, Felice and
Miaschi, Alessio and
Venturi, Giulia",
editor = "Dell'Orletta, Felice and
Lenci, Alessandro and
Montemagni, Simonetta and
Sprugnoli, Rachele",
booktitle = "Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)",
month = dec,
year = "2024",
address = "Pisa, Italy",
publisher = "CEUR Workshop Proceedings",
url = "https://aclanthology.org/2024.clicit-1.27/",
pages = "221--232",
ISBN = "979-12-210-7060-6",
abstract = "State-of-the-art Large Language Models (LLMs) demonstrate exceptional proficiency across diverse tasks, yet systematic evaluations of their linguistic abilities remain limited. This paper addresses this gap by proposing a new evaluation framework leveraging the potentialities of Controllable Text Generation. Our approach evaluates the models' capacity to generate sentences that adhere to specific linguistic constraints and their ability to recognize the linguistic properties of their own generated sentences, also in terms of consistency with the specified constraints. We tested our approach on six Italian LLMs using various linguistic constraints."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ciaccio-etal-2024-controllable">
<titleInfo>
<title>Controllable Text Generation to Evaluate Linguistic Abilities of Italian LLMs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Cristiano</namePart>
<namePart type="family">Ciaccio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Felice</namePart>
<namePart type="family">Dell’orletta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessio</namePart>
<namePart type="family">Miaschi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giulia</namePart>
<namePart type="family">Venturi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Felice</namePart>
<namePart type="family">Dell’Orletta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simonetta</namePart>
<namePart type="family">Montemagni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachele</namePart>
<namePart type="family">Sprugnoli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>CEUR Workshop Proceedings</publisher>
<place>
<placeTerm type="text">Pisa, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-12-210-7060-6</identifier>
</relatedItem>
<abstract>State-of-the-art Large Language Models (LLMs) demonstrate exceptional proficiency across diverse tasks, yet systematic evaluations of their linguistic abilities remain limited. This paper addresses this gap by proposing a new evaluation framework leveraging the potentialities of Controllable Text Generation. Our approach evaluates the models’ capacity to generate sentences that adhere to specific linguistic constraints and their ability to recognize the linguistic properties of their own generated sentences, also in terms of consistency with the specified constraints. We tested our approach on six Italian LLMs using various linguistic constraints.</abstract>
<identifier type="citekey">ciaccio-etal-2024-controllable</identifier>
<location>
<url>https://aclanthology.org/2024.clicit-1.27/</url>
</location>
<part>
<date>2024-12</date>
<extent unit="page">
<start>221</start>
<end>232</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Controllable Text Generation to Evaluate Linguistic Abilities of Italian LLMs
%A Ciaccio, Cristiano
%A Dell’orletta, Felice
%A Miaschi, Alessio
%A Venturi, Giulia
%Y Dell’Orletta, Felice
%Y Lenci, Alessandro
%Y Montemagni, Simonetta
%Y Sprugnoli, Rachele
%S Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)
%D 2024
%8 December
%I CEUR Workshop Proceedings
%C Pisa, Italy
%@ 979-12-210-7060-6
%F ciaccio-etal-2024-controllable
%X State-of-the-art Large Language Models (LLMs) demonstrate exceptional proficiency across diverse tasks, yet systematic evaluations of their linguistic abilities remain limited. This paper addresses this gap by proposing a new evaluation framework leveraging the potentialities of Controllable Text Generation. Our approach evaluates the models’ capacity to generate sentences that adhere to specific linguistic constraints and their ability to recognize the linguistic properties of their own generated sentences, also in terms of consistency with the specified constraints. We tested our approach on six Italian LLMs using various linguistic constraints.
%U https://aclanthology.org/2024.clicit-1.27/
%P 221-232
Markdown (Informal)
[Controllable Text Generation to Evaluate Linguistic Abilities of Italian LLMs](https://aclanthology.org/2024.clicit-1.27/) (Ciaccio et al., CLiC-it 2024)
ACL